
NON-GENERICITY PHENOMENA IN ORDERED FRAÏSSÉ CLASSES

KONSTANTIN SLUTSKY

ABSTRACT. We show that every two-dimensional class of topological similarity, and hence every diagonal conjugacy
class of pairs, is meager in the group of order preserving bijections of the rationals and in the group of automorphisms
of the ordered rational Urysohn space.

1. INTRODUCTION

The size of conjugacy classes (in the topological sense: dense, meager, comeager, etc.) in the groups of
automorphisms of Fraïssé limits has recently become an active area of research. This is partially due to the
newly revealed connections between combinatorial properties of Fraïssé classes and algebraic, topological,
and dynamical properties of the groups of automorphisms of their limits. One of the most astonishing links
was established by Kechris, Pestov and Todorcevic in [KPT05] and displays a close relationship between
Ramsey theory (a purely combinatorial area) and extreme amenability (a classical dynamical notion).

Another reason for the interest in the size of conjugacy classes of Polish groups in general, and groups of
automorphisms of Fraïssé limits in particular, comes from the special importance of some concrete groups,
e.g., the group of automorphisms of the countable atomless Boolean algebra (which is isomorphic via Stone’s
theorem to the group of homeomorphisms of the Cantor space), the group of isometries of the rational
Urysohn space, and the group of order preserving bijections of the rationals. The reader may consult [KR07]
for details, examples, and a deep structural theory for the groups with large conjugacy classes.

In [Tru07] J. K. Truss looked at different possible notions of genericity of conjugacy classes and discussed
advantages of each. In general, conjugacy classes are objects that are difficult to understand, and the
conjugacy relation may sometimes be very complicated (complete analytic). Motivated by the work of Truss,
in this paper we look at a coarser equivalence relation than conjugacy, namely at classes of topological
similarity. They are much easier to work with and can be used to prove non-genericity in some cases.

Let us recall the definition from [Ros09].

Definition 1.1. If G is a topological group, an n-tuple (g1, . . . , gn) ∈ Gn is said to be topologically similar to
an n-tuple (f1, . . . , fn) ∈ Gn if the map F sending gi 7→ fi extends (necessarily uniquely) to an isomorphism,
that is continuous and has continuous inverse, between the groups generated by these tuples

F : 〈g1, . . . , gn〉 → 〈f1, . . . , fn〉.
We denote this relation by EnTS .

There is another natural relation on the n-tuples in G, namely the relation of diagonal conjugation, i.e.
(g1, . . . , gn) is conjugate to (f1, . . . , fn) if there is some α ∈ G such that

(αg1α
−1, . . . , αgnα

−1) = (f1, . . . , fn).

More generally, if G is a topological subgroup of H, then one can restrict the conjugacy relation in H to G,
i.e. say that an n-tuple (g1, . . . , gn) ∈ Gn conjugates in H to an n-tuple (f1, . . . , fn) ∈ Gn if there is some
β ∈ H such that

(βg1β
−1, . . . , βgnβ

−1) = (f1, . . . , fn).

It is easy to see that this is an equivalence relation on n-tuples of G and we denote it by EnH (this relation
also depends on G and on the embedding of G into H, but this information is usually clear from the context).
The following proposition is obvious.

Proposition 1.2. Let G be a topological group and n ∈ N, then
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(i) the relation of topological similarity is an equivalence relation;
(ii) if H is a topological group such that G 6 H is a topological subgroup of it, then EnH is finer (not necessarily

strictly) than EnTS . In particular, EnG is finer than EnTS .

Equivalence classes of topological similarity on n-tuples are called n-dimensional similarity classes, in
particular a two-dimensional similarity class is a set of pairs.

Since conjugacy classes refine classes of topological similarity, if one wants to prove meagerness of the
former, it suffices to prove meagerness of the latter (it suffices, but may be impossible, meagerness of
conjugacy classes does not imply meagerness of classes of topological similarity). This sometimes turns out
to be an easier task. For example, Rosendal in [Ros09] developed this idea to find a simple proof of A. del
Junco’s result, that each conjugacy class of measure preserving automorphisms of the standard Lebesgue
space is meager.

Hodkinson showed (see [Tru07] for the details) that in the group of order preserving automorphisms
of the rationals all conjugacy classes of pairs are meager (though it is known that there is a comeager
one-dimensional conjugacy class in Aut(Q)). In this paper we strengthen this result and show that all
two-dimensional classes of topological similarity are meager in this group.

The paper is organized as follows. In the second section we give a brief introduction to the theory of Fraïssé
classes, which is the right context for the technique developed in this paper. The third section is devoted to
the strengthening of the Hodkinson’s result on classes of diagonal conjugation in the rationals, and in the
fourth and fifth sections an analogous theorem is proved for the group of order preserving isometries of the
ordered rational Urysohn space.

Acknowledgment. The author wants to thank Christian Rosendal for advising him during the process of
writing this paper, for posing questions, that are covered here, and for helpful and very inspiring communica-
tion and comments. The author also thanks Sławomir Solecki and Ward Henson for helpful discussions, and
two anonymous referees for noticing a few flaws in the first version of the paper and for numerous comments
that helped to improved the style.

2. BRIEF INTRODUCTION TO FRAÏSSÉ CLASSES

In this section we give a short introduction to the theory of Fraïssé classes. In the next two sections we
deal with two examples of them, so it is useful to keep in mind this more general setting. The classical text
on Fraïssé classes is a beautiful book by Hodges [Hod93].

Let L be a relational first order language. We use the standard notation: solid arrows correspond to “for
all” quantifiers, and dashed arrows represent maps that “exist”.

Definition 2.1. Let A and B be two L-structures. A map f : A→ B is called a strong homomorphism if for
any R ∈ L of arity m and for any x1, . . . , xm ∈ A

RAx1 . . . xm ⇐⇒ RBf(x1) . . . f(xm).

The map is a strong embedding if it is an injective strong homomorphism (if we adopt a convention that the
equality sign “=” is always in the set of relations then any strong homomorphism is necessarily injective).

Definition 2.2. Let K be a class of finite L-structures. For L-structures A and B by A 6 B we mean “A
strongly embeds into B”. K is called a Fraïssé class if the following properties hold:
(HP) If A 6 B and B ∈ K then A ∈ K;

(JEP) For A ∈ K and B ∈ K there is some C ∈ K such that A 6 C and B 6 C;
(AP) For A ∈ K, B ∈ K, C ∈ K and embeddings i : A → B, j : A → C there are D ∈ K and embeddings

k : B→ D, l : C→ D such that k ◦ i = l ◦ j, i.e., the following diagram commutes

B

k

  
A

i

>>

j

  

D

C

l

>>
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(Inf) K contains structures of arbitrarily high finite cardinality and has up to isomorphism only countably
many structures.

Basic examples of Fraïssé classes are: finite sets, finite linear orders, finite graphs and finite metric spaces
with rational distances (to satisfy (Inf) condition). With a Fraïssé class K one can associate its Fraïssé limit
(which is unique up to an isomorphism).

Definition 2.3. The countably infinite structure K is called a Fraïssé limit of the class K if the following holds:
(i) Finite substructures of K up to isomorphism are exactly the elements of K;

(ii) K is ultrahomogeneous (that is any isomorphism between finite substructures of K extends to a full
automorphism of K).

Fraïssé limits of the above Fraïssé classes are: N –- countably infinite set, Q –- dense linear ordering
without endpoints, G –- random graph, QU –- rational Urysohn space.

In the next section we deal with the simplest linearly ordered Fraïssé class: with the rationals Q. The
fourth and fifth sections are devoted to the case of the linearly ordered rational Urysohn space.

3. TOPOLOGICAL SIMILARITY CLASSES IN THE GROUPS Aut(Q) AND Homeo+([0, 1])

Let Q denote the rational numbers viewed as a linearly ordered set. By an open interval I = (a, b) ⊂ Q
we mean the set of rational numbers {c : a < c < b} ⊂ Q. A closed interval [a, b] also includes endpoints a
and b. If I is a bounded interval (open or closed) L(I) will denote its left endpoint and R(I) will be its right
endpoint. If A ⊂ Q is a finite subset, min(A) and max(A) will denote its minimal and maximal elements
respectively.

Let G denote the group Aut(Q) of order preserving bijections of the rationals.

Definition 3.1. A partial isomorphism of Q is an order preserving bijection p between finite subsets A and
B of Q.

It is a basic property of the rationals (and, as mentioned earlier, of a Fraïssé limit in general) that each
partial isomorphism can be extended (certainly, not uniquely) to a full automorphism.

Letters p and q (with possible sub- or superscripts) will denote partial isomorphisms; let dom(p) be the
domain of p, and ran(p) be its range. If I ⊆ Q then p|I denotes the restriction of p on I ∩ dom(p); F(p) will
be the set of fixed points in the domain of p, i.e.,

F(p) = {c ∈ dom(p) : p(c) = c}.
First we recall that G is a Polish group (i.e., a separable completely metrizable topological group) in the

topology given by the basic open sets

U(p) = {g ∈ G : g extends p},
where p is a partial isomorphism of Q. Note that if p and q are two partial isomorphisms and q extends p then
U(q) ⊆ U(p); we will use this observation frequently. We denote the identity element of G by 1.

We use the words generic and comeager as synonyms. For example, a property is generic in the group G if
the set of elements with this property is comeager in G.

Let F (s, t) denote the free group on two generators: s and t; elements of F (s, t) are reduced words on
the alphabet {s, t, s−1, t−1}. Every element w ∈ F (s, t) has certain length associated to it, namely the length
of the reduced word w. This length is denoted by |w|. If u, v ∈ F (s, t) are words, we say that the word
uv ∈ F (s, t) is reduced if |uv| = |u|+ |v|, that is there is no cancellation between u and v.

If w ∈ F (s, t) is a reduced word, w = tnksmk · · · tn1sm1 , and p, q are partial isomorphisms, then we can
define a partial isomorphism w(p, q) by w(p, q)(c) = qnkpmk · · · qn1pm1(c), whenever the right-hand side is
defined. The orbit of c under w(p, q) is by definition

Orbw(p,q)(c) = ∪kl=1{pi sign(ml)qnl−1 · · · pm1(c), qj sign(nl)pml · · · pm1(c) : i = 0, . . . , |ml|, j = 0, . . . , |nl|}.
We say that a word w starts from the word v if w can be written as w = vu for some word u, where vu

is reduced. Similarly, we say that w ends in v if there is a word u such that w = uv, where uv is reduced.
On the one hand this is consistent with the intuitive understanding of these notions for, say, left-to-right
languages. On the other hand, we consider left actions, and then the end of the word acts first, i.e., if w = st
then w(p, q)(c) = p(q(c)). This may be a bit confusing, we apologize for that and emphasize this possible
confusion.
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Definition 3.2. Let p be a partial isomorphism of Q. An interval (a, b) ⊂ Q is called p-increasing if a, b ∈
dom(p), p(a) = a, p(b) = b and p(c) > c for any c ∈ dom(p) ∩ (a, b). The definition of p-decreasing interval
is analogous. Note that if [a, b] ∩ dom(p) = {a, b} and p(a) = a, p(b) = b then the interval (a, b) is both
p-increasing and p-decreasing. An interval is p-monotone if it is either p-increasing or p-decreasing.

Definition 3.3. Let p be a partial isomorphism. Let dom(p) = {a0, . . . , an} and assume that a0 < . . . < an.
We say that p is informative if p(a0) = a0, p(an) = an and there is a list {i0, . . . , ir} of indices such that

(i) i0 = 0, ir = n;
(ii) aik = p(aik) for 0 6 k 6 r;

(iii) for any 0 6 k < r the interval (aik , aik+1
) is p-monotone.

If p is an informative partial isomorphism and dom(p) = {a0, . . . , an} as above then we set

Ess(p) =
(

dom(p) ∪ ran(p)
)
\ {a0, an}

and refer to it as to the set of essential points of p.

a0 ai1 ai2 an

Ess(p)

Definition 3.4. A pair (p, q) of partial isomorphisms is called piecewise elementary if the following holds
(i) p and q are informative;

(ii) min(dom(p)) = min(dom(q)),
(iii) max(dom(p)) = max(dom(q)).
If additionally F(p)∩F(q) has cardinality at most 2 (i.e., consists of the above minimum and maximum) then
the pair (p, q) is called elementary.

Let (p, q) be a piecewise elementary pair, and F(p) ∩ F(q) = {a0, . . . , an} with ai < aj for i < j. Set
Ij = [aj , aj+1], then (p|Ij , q|Ij ) is elementary for any 0 6 j < n. Thus every piecewise elementary pair (p, q)
can be decomposed into finitely many elementary pairs.

The following obvious lemma partially explains the importance of piecewise elementary pairs.

Lemma 3.5. For any non-empty open V ⊆ G×G there is a piecewise elementary pair (p, q) such that U(p)×
U(q) ⊆ V .

Definition 3.6. Let (p, q) be an elementary pair. We say that a triple (p′, q′, w) liberates p in (p, q), where p′

and q′ are partial isomorphisms that extend p and q respectively, and w ∈ F (s, t) is a reduced word, if the
following holds

(i) p′ and q′ are informative;
(ii) min(dom(p′)) = min(dom(p)), min(dom(q′)) = min(dom(q));

(iii) max(dom(p′)) = max(dom(p)), max(dom(p′)) = max(dom(p));
(iv) the word w starts from a non-zero power of t, w = tnv for n 6= 0;
(v) w(p′, q′)(c) is defined for any c ∈ Ess(p)∪Ess(q) and

w(p′, q′)(min(Ess(p)∪Ess(q))) > max(Ess(p′)),

(vi) there is an open interval J such that R(J) = max(dom(q)), q′ is monotone on J and w(p′, q′)(c) ∈ J
for any c ∈ Ess(p)∪Ess(q); moreover, if n > 0 in the item (iv), then J is q′-increasing, and it is
q′-decreasing otherwise.

Similarly, we say that a triple (p′, q′, w) liberates q in (p, q) if the above holds with roles of p and q, s and t
interchanged.

For a piecewise elementary pair (p, q), we say that a triple (p′, q′, w) liberates p [liberates q] in (p, q) if
(i) min(dom(p′)) = min(dom(p)), min(dom(q′)) = min(dom(q));

(ii) max(dom(p′)) = max(dom(p)), max(dom(p′)) = max(dom(p));
(iii) for any interval I, such that (p|I , q|I) is elementary, the triple (p′|I , q′|I , w) liberates p|I [liberates q|I]

in (p|I , q|I).
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Lemma 3.7. For any elementary pair (p, q) there is a triple (p′, q′, w) that liberates p [liberates q] in (p, q).

Proof. We show the existence of a triple that liberates p, and the second clause then follows by symmetry.
Extending p and q if necessary, we may assume that

(i) Ess(p) 6= ∅, Ess(q) 6= ∅;
(ii) I1, . . . , Ik are all the (open) intervals of monotonicity for p and J1, . . . , Jl are all the (open) intervals of

monotonicity for q; we list them in increasing order, i.e., Ii < Ii+1, Jj < Jj+1;
(iii) I1 ∩ dom(p) 6= ∅ and J1 ∩ dom(q) 6= ∅;
(iv) Ik ∩ dom(p) = ∅ and Jl ∩ dom(q) = ∅;
(v) L(Ik) > L(Jl).

Let α = min(Ess(p)∪Ess(q)). Then α ∈ I1 ∩ J1 by (iii) (and in particular α is not a fixed point of p or q).
We first find an informative extension p1 of p that has the same intervals of monotonicity as p and m1 ∈ Z
(the sign of m1 depends on whether p is increasing or decreasing) such that pm1

1 (α) is defined and is “close
enough” to the right endpoint of I1. “Close enough” exactly means the following. Since by assumptions
R(I1) is not fixed by q (because (p, q) is elementary), there is some j1 such that R(I1) ∈ Jj1 and we want
pm1

1 (α) ∈ Jj1 . At the second step we find an informative extension q1 of q (also with the same intervals of
monotonicity) and n1 ∈ Z (similarly the sign of n1 depends on whether q is increasing or decreasing) such
that qn1

1 pm1
1 (α) is defined and is “close enough” in the above sense to the right endpoint of Jj1 . We proceed in

this way and stop as soon as the image of α reaches Jl, i.e., we obtain extensions p̄, q̄ of p and q and a word
u = smN+1v, where v = tnN smN · · · tn1sm1 such that u(p̄, q̄)(α) is defined, lies in Jl and v(p̄, q̄)(α) 6∈ Jl. Note
that since we added to the domain of q only points of the orbit of α under u, this implies dom(q̄) ∩ Jl = ∅.
Also by induction p̄ and q̄ are informative with the same decomposition into intervals of monotonicity as for
p and q.

The following figure illustrates the construction (horizontal arrows indicate monotonicity of partial iso-
morphisms, bars stand for fixed points, the black dot is the minimal element α, and gray dots are its images
under w):

pm1
pm2

qn1

α

a0 an

We now take extensions p̄′, q̄′ of p̄ and q̄ such that
(i) u(p̄′, q̄′)(c) is defined for every c ∈ Ess(p)∪Ess(q);

(ii) p̄′ and q̄′ are informative with the same decomposition into intervals of monotonicity as for p̄ and q̄;
(iii) the minimum and maximum of the domains of p̄′ and q̄′ are equal to the minimum and maximum of

the domains of p̄ and q̄;
(iv) q̄′ is monotone on Jl (this is possible since Jl ∩ dom(q̄) = ∅).

Set p′ = p̄′. Finally extending q̄′ to q′ we can find M ∈ Z \ {0} such that

q′Mu(p′, q′)(α) > max(Ess(p′)).

And so let w = tMu, then (p′, q′, w) liberates p in (p, q). �

Remark 3.8. In the lemma above we started our construction by applying a power of p, but we likewise
could start it by applying a power of q.

Remark 3.9. We view rationals as a dense linear ordering without endpoints. But note that if we have the
usual metric on Q then the above construction gives us p′, q′, and w such that w(p′, q′)(α) is as close in this
metric to the endpoint max(dom(p)) as one wants. We will use this observation later.

Lemma 3.10. For any elementary pair (p, q) and any word u there are a word v, and partial isomorphisms p′

and q′ such that the triple (p′, q′, vu) liberates p [liberates q] in (p, q) and |vu| = |v|+ |u| (i.e., no cancellation
between v and u happens).
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Proof. First we take extensions p1 and q1 of p and q respectively such that u(p1, q1)(c) is defined for any
c ∈ Ess(p)∪Ess(q), (p1, q1) is elementary and

min(dom(p1)) = min(dom(p)) = min(dom(q)) = min(dom(q1)),

max(dom(p1)) = max(dom(p)) = max(dom(q)) = max(dom(q1)).

By Lemma 3.7 one can find a word v and extensions p′, q′ of p1, q1 such that (p′, q′, v) liberates p1 in
(p1, q1). By Remark 3.8 we may also assume that there is no cancellation in vu. We claim that (p′, q′, vu)
liberates p in (p, q). Items (i-iv) from the definition of liberation are obvious.

For item (v) note that by construction u(p1, q1)(c) for all c ∈ Ess(p)∪Ess(q) is defined. Since p′ and q′

extend p1 and q1 we get that u(p′, q′)(c) is defined for all c ∈ Ess(p)∪Ess(q) and since (p′, q′, v) liberates p1 in
(p1, q1) we have that for all c ∈ Ess(p)∪Ess(q) the expression v(p′, q′)(u(p1, q1)(c)) is defined (just because
u(p1, q1)(c) ∈ Ess(p1)∪Ess(q1)). This shows that vu(p′, q′)(c) is defined for c ∈ Ess(p)∪Ess(q). Also we
have

v
(
p′, q′

)(
min(Ess(p1)∪Ess(q1))

)
> max(Ess(p′)).

Finally u(p1, q1)(Ess(p)∪Ess(q)) ⊆ Ess(p1)∪Ess(q1) implies

vu
(
p′, q′

)(
min(Ess(p)∪Ess(q))

)
> max(Ess(p′)).

Item (vi) follows immediately from the fact that (p′, q′, v) liberates p1 in (p1, q1) and from the observation
that

u
(
p1, q1

)(
Ess(p)∪Ess(q)

)
⊆ Ess(p1)∪Ess(q1) . �

Lemma 3.11. Let (p, q) be a piecewise elementary pair and assume a triple (p′, q′, w) liberates p [liberates q] in
(p, q). Let u = tnv [u = smv] be a reduced word such that uw is irreducible. Then there is a triple (p′′, q′′, uw)
that liberates p [liberates q] in (p, q). Moreover, one can take p′′ to be an extension of p′ and q′′ to be an extension
of q′.

Proof. By the definition of liberation for piecewise elementary pairs it is enough to prove the statement for
elementary triples only. So assume (p, q) is elementary. Since w liberates p in (p, q) it has to start with a
non-zero power l of t, i.e, w = tl∗. We prove the statement by induction on |u|. If u is empty the statement
is trivial. Now consider the inductive step. Either u = ∗tk and the sign of k matches the sign of l (because
uw has to be reduced by assumptions) or u = ∗sk with k 6= 0. In the former case extend q′ to q′1 in such a
way that (tkw)(p′, q′1)(c) is defined for c ∈ Ess(p)∪Ess(q), then (p′, q′1, t

kw) will be a p-liberating tuple by the
item (vi) of the definition of liberation. In the second case we can find p′1 such that (p′1, q

′, skw) liberates q′

in (p′, q′) by taking p′1 such that (skw)(p′1, q
′)(c) > max(Ess(p′)∪Ess(q′)) for any c ∈ Ess(p′)∪Ess(q′). This

proves the induction step and the lemma. �

Lemma 3.12. Let (p, q) be a piecewise elementary pair and u ∈ F (s, t). Then there is a triple (p′, q′, w) that
liberates p [liberates q] in (p, q) and such that w = vu is reduced.

Proof. We prove the statement by induction on the number of elementary components of (p, q). Lemma 3.10
covers the base of induction. Assume we have proved the lemma for r-many elementary components and
inductively constructed a triple (p̄r, q̄r, wr) that liberates pr in (pr, qr), where pr and qr are restrictions of
p and q to the first r-many elementary components. Consider the restrictions p̃r+1, q̃r+1 of p and q to the
r + 1 elementary component. By the base of induction (i.e., Lemma 3.10) we can find extensions p̃′r+1, q̃′r+1

of p̃r+1 and q̃r+1 and a word vr+1 such that (p̃′r+1, q̃
′
r+1, vr+1wr) liberates p̃r+1 in (p̃r+1, q̃r+1) and vr+1wr is

irreducible. By Lemma 3.11 we can also extend pr and qr to p′r, q
′
r in such a way that (p′r, q

′
r, vr+1wr) liberates

pr in (pr, qr). Now set p̄r+1 to coincide with p′r on the first r-many elementary components and with p̃′r+1

on the r + 1 component. Define q̄r+1 similarly. Then (p̄r+1, q̄r+1, wr+1) liberates pr+1 in (pr+1, qr+1). This
proves the induction step and the lemma. �

Lemma 3.13. For any pair (p, q) of partial isomorphisms and any word u ∈ F (s, t) there are extensions p′ and
q′ of p and q respectively and a reduced word w = vu such that w(p′, q′)(c) = c for any c ∈ dom(p) ∪ dom(q).

Proof. By Lemma 3.5 it is enough to prove the statement for a piecewise elementary pair (p, q). By Lemma
3.12 we can find extensions p̄, q̄ and a word v such that (p̄, q̄, vu) liberates p in (p, q). By the definition of
liberation we can now extend p̄ to p′ by declaring

p′(c) = c, for any c ∈ vu(p̄, q̄)(Ess(p)∪Ess(q)).
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Now set q′ = q̄ and w = u−1v−1svu. Then w(p′, q′)(c) = c for any c ∈ dom(p) ∪ dom(q). �

Lemma 3.14. Fix a sequence {uk} of reduced words. For a generic (f, g) ∈ G×G there is a sequence of reduced
words wk = vkuk such that wk(f, g)→ 1.

Proof. Take an enumeration {ci} = Q of the rationals. Let

Bkn = {(f, g) ∈ G×G : ∃w = vuk reduced and w(f, g)(ci) = ci for 0 6 i 6 n}.

We claim that each Bkn is dense and open. Indeed, assume for a certain n one has (f, g) ∈ Bkn. This is
witnessed by a word w. Set

D = ∪ni=0 Orbw(f ,g)(ci)

and let p = f |D, q = g|D. Then (f, g) ∈ U(p)× U(q) ⊆ Bkn and so Bkn is open. Density follows from Lemma
3.13.

Now by the Baire theorem ∩n,kBkn is a dense Gδ. The lemma follows. �

Theorem 3.15. Each two-dimensional topological similarity class in G is meager.

Proof. Assume towards a contradiction that there is a pair (f1, g1) ∈ G × G that has a non-meager class
of topological similarity. Then by Lemma 3.14 there must be a sequence wn = vnt

nsn of reduced words
such that (f1, g1) converges to the identity along this sequence (we apply Lemma 3.14 with the sequence
uk = tksk).

Take and fix a ∈ Q. Set
Fa = {(f, g) ∈ G×G : f(a) = a = g(a)}.

Let
Cn = {(x, y) ∈ G×G : ∃m > n wm(x, y)(a) 6= a}.

Then Cn is open and dense in (G×G) \ Fa. To see density take a basic open set U(p)×U(q) ⊆ (G×G) \ Fa
and assume p(a) 6= a (the case when p(a) = a, but q(a) 6= a is similar). For some k > n pk(a) is not in the
domain of p. Thus the set

{b ∈ Q : ∃f ∈ U(p) fk+1(a) = b}
is infinite, and so (by induction) there are infinitely many values that wk+1(f, g)(a) may attain for a pair
(f, g) ∈ U(p) × U(q). Hence wk+1(f, g)(a) 6= a for some (f, g). And so Cn is dense in G × G \ Fa. An
application of the Baire theorem shows that ∩Cn is a dense Gδ and so for a generic (f, g) ∈ (G × G) \ Fa
one has wn(f, g)(a) 6→ a in the discrete topology. Since ∪a(G × G) \ Fa = (G × G) \ {1 × 1} we get a
contradiction with the assumption that wn(f1, g1)→ 1 and that the class of topological similarity of (f1, g1)
is non-meager. �

Homeomorphisms of the unit interval. We now turn to the group of homeomorphisms of the unit interval.
This is a Polish group in the natural topology, given by the basic open sets:

U(f ; a1, . . . , an; ε) = {g ∈ Homeo([0, 1]) : |g(ai)− f(ai)| < ε}.

We may write this neighborhood as U(p; ε), where p = f |{a1,...,an} is a partial isomorphism. Since Q is dense
in [0, 1], we may assume that p is a partial isomorphism of the rationals: this will give us a base of open sets.

This group Homeo([0, 1]) has a normal subgroup of index 2, namely the subgroup Homeo+([0, 1]) of order
preserving homeomorphisms. If H = Homeo+([0, 1]), then Aut(Q) = G naturally embeds into H (this
embedding is a continuous injective homomorphism, its inverse, though, is not continuous), and the image
of G under this embedding is dense in H.

Theorem 3.16. Every two-dimensional class of topological similarity in H is meager.

Proof. We imitate the proof of Theorem 3.15. If {xm} is an enumeration of the rationals Q∩ [0, 1], then {xm}
is dense in [0, 1]. Set

Am,n = {f ∈ H : |f(xm)− xm| > 1/n and |f−1(xm)− xm| > 1/n},
Bm,n = {(f, g) ∈ H ×H : f ∈ Am,n or g ∈ Am,n}.

Note that Bm,n is open for every m and n. Then ∪m,nBm,n = H ×H \ {(1, 1)} and so it is enough to prove
that each two-dimensional class of topological similarity is meager in each of Bm,n.
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Let uk be a sequence of words such that for every piecewise elementary pair (p, q) (here p and q are partial
isomorphisms of the rationals, as before) there are infinitely many k such that for some p′k, q′k, (p′k, q

′
k, uk)

liberates p in (p, q). Then by Lemma 3.14 for a generic pair (f, g) ∈ G×G there is a sequence of reduced words
wk = vkuk such that wk(f, g)→ 1. This implies that for a generic pair (f, g) ∈ H ×H there is a sequence wk
as above (because the topology in H is coarser than in G). If there is a non-meager two-dimensional class of
topological similarity then there is a sequence of reduced words {wk} = {vkuk} (for some {vk}) such that
the set of pairs (f1, g1) ∈ H ×H that converges to the identity along wk is non-meager.

Fix now m,n and a sequence of reduced words wk = vkuk. Set

Ck = {(f, g) ∈ H ×H : ∃K > k |wK(f, g)(xm)− xm| > 1/2n}.

Each Ck is open, and we claim that it is also dense in Bm,n. Let V ⊆ Bm,n be an open set. Without loss
of generality we may assume that V = U(p; ε1) × U(q; ε2), where p and q are partial isomorphisms of the
rationals. Let

δ = min{|xm − c| : c ∈ F(p) ∩ F(q)} > 1/n.

Then there is K > k and p′, q′ such that (p′, q′, uK) liberates p in (p, q). Now repeat the proof of Lemma
3.11 and use Remark 3.9 to get p′′, q′′ that extend p′ and q′ and such that |wK(p′′, q′′)(xm) − xm| > 1/2δ.
Hence each Ck is dense in Bm,n. Now by the Baire theorem the intersection ∩kCk is a dense Gδ in Bm,n and
thus for any specific sequence wk the set of elements (f1, g1) ∈ H ×H that converges to the identity along
this sequence is meager in Bm,n. Finally we showed that each two-dimensional topological similarity class is
meager in Bm,n for any m, n and so is in H ×H. �

4. EXTENSIONS OF PARTIAL ISOMETRIES

In this section we prove several results, that will be used later, when dealing with the ordered Urysohn
space. But we believe that some of the theorems below are of independent interest for understanding the
group of isometries of the Urysohn space.

We recall that the Urysohn space U is a complete separable metric space, that is uniquely characterized by
the following properties:

• Every finite metric space can be isometrically embedded into U;
• U is ultrahomogeneous, that is each partial isometry between finite subsets of U extends to a full

isometry of U.
There is a rational counterpart QU of the Urysohn space. It is called rational Urysohn space. This is a
countable metric space with rational distances, characterized by similar properties:

• Every finite metric space with rational distances can be isometrically embedded into QU;
• QU is ultrahomogeneous.

The groups of isometries Iso(U) and Iso(QU) of these spaces are Polish groups when endowed with the
topology of pointwise convergence (for this QU is viewed as a discrete topological space).

Definition 4.1. Let (A, d) be a finite metric space with at least two elements. The density of A is denoted by
D(A) and is the minimal distance between two distinct points in A:

D(A) = min{d(x, y) : x, y ∈ A, x 6= y}.

Definition 4.2. An ordered metric space is a triple (A, d,<), where d is a metric on A and < is a linear
ordering on A.

Definition 4.3. A partial isometry or partial isomorphism of a metric space C is an isometry p : A → B
between finite subspaces A, B ⊆ C. A partial isomorphism of an ordered metric space is a partial isometry
of the metric space that also preserves the ordering on its domain.

Definition 4.4. Let p be a partial isometry of a metric space. Then we let dom(p) denote the domain of p
and ran(p) denote its range. A point x ∈ dom(p) is called periodic if there is a natural number n > 0 such that

x, p(x), . . . , pn(x) ∈ dom(p) and pn(x) = x.

The set of periodic points is denoted by Z(p). A point x ∈ dom(p) is called fixed if p(x) = x and the set of
fixed points is denoted by F(p).
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In this section we deal mostly with the classical Urysohn space, but some of the results will be later applied
to the ordered rational Urysohn space. The following proposition will let us do that.

Proposition 4.5. Let A be a finite ordered metric space, and let p be a partial isomorphism of A. Let B be
a finite metric space (with no ordering) and let q be a partial isometry of B with Z(q) = F(q). Suppose that
A ⊆ B as metric spaces and q extends p. If

∀x ∈ dom(q) q(x) ∈ A ⇐⇒ x ∈ dom(p)

then there is a linear ordering on B that extends an ordering on A and such that q becomes a partial isomorphism
of an ordered metric space B.

Proof. We prove the statement by induction on |B \A|. If A = B the statement is obvious. For the inductive
step we consider two cases.

Case 1. There is some x ∈ A such that x ∈ dom(q) but x 6∈ dom(p). Then by the assumption, q(x) ∈ B \A.
Now extend the linear ordering on A to a partial ordering on A ∪ {q(x)} by declaring for y ∈ A

q(x) < y ⇐⇒ ∃z ∈ dom(p) (p(z) 6 y)&(x < z),

y < q(x) ⇐⇒ ∃z ∈ dom(p) (y 6 p(z))&(z < x).

It is straightforward to check that this relation is indeed a partial ordering on A ∪ {q(x)}. Extend this
partial ordering to a linear ordering on A∪ {q(x)} in any way. Then q is a partial isomorphism of A∪ {q(x)}
and we apply the induction.

Case 2. Assume the opposite to the first case happens. Then q|A = p. Take any x ∈ dom(q) \A (if there is
no such x then dom(p) = dom(q) and the statement is obvious). Assume first that x is not a fixed point of q.
Then define a linear ordering on A ∪ {x, q(x)} by declaring

∀y ∈ A (y < x)&(y < q(x))&(x < q(x)).

Then q is a partial isomorphism of A ∪ {x, q(x)} and we can apply the induction hypothesis. If x was a fixed
point then we declare

∀y ∈ A (y < x),

and, again, induction does the rest. �

Definition 4.6. Let A = (A, dA), B = (B, dB), and C = (C, dC) be finite metric spaces and i : A → B,
j : A→ C be isometries. We define the free amalgam D = B ∗A C of metric spaces as follows: substituting
B and C by isomorphic copies we may assume that B∩C = A. Set D = B∪C and define the metric dD by:

dD(x, y) =


dB(x, y) if x, y ∈ B,
dC(x, y) if x, y ∈ C,
min
z∈A
{dB(x, z) + dC(z, y)} if x ∈ B and y ∈ C.

Note that the first and the second clauses agree for x, y ∈ A.
If A is empty then we set R = diam(B) + diam(C), D = B tC and

dD(x, y) =


dB(x, y) if x, y ∈ B,
dC(x, y) if x, y ∈ C,
R otherwise.

The core of our arguments will be the following seminal result due to Sławomir Solecki established in 2005,
see [Sol05]. The second item is slightly modified compared to the original statement, but the modification
follows from the proof in [Sol05] without any additional work.

Theorem 4.7 (Solecki). Let a finite metric space A and a partial isometry p of A be given. There exist a finite
metric space B with A ⊆ B as metric spaces, an isometry p̄ of B extending p, and a natural number M such that

(i) p̄2M = 1B;
(ii) if a ∈ A is aperiodic then p̄j(a) 6= a for 0 < j < 2M , and moreover for any j such that 0 < j < 2M

p̄j(a) ∈ A iff p̄j−1(a) ∈ dom(p);
(iii) A ∪ p̄M (A) is the free amalgam of A and p̄M (A) over (Z(p), idZ(p), p̄

M |Z(p)).
Moreover, the distances in B may be taken from the additive semigroup generated by the distances in A.
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Definition 4.8. Let A, B, C be metric spaces and let C be embedded into A and B. We say that B extends
A over C if there exists an embedding i : A→ B such that the following diagram commutes:

A

i

  
C
?�

OO

� � // B

We say that A and B are disjoint over C if neither B extends A over C nor A extends B over C.

Lemma 4.9. Let A be a finite metric space, let p be a partial isometry of A, and x ∈ dom(p) be a non-periodic
point x 6∈ Z(p) such that and x 6∈ ran(p) (i.e., p−1(x) is undefined). Then there are metric spaces A1 and A2

that both extend A: A ⊂ A1 and A ⊂ A2, and partial isometries p1 of A1 and p2 of A2 that both extend p and
such that x 6∈ ran(p1) ∪ ran(p2) and Orbp1(x) and Orbp2(x) are disjoint over Orbp(x).

Moreover, one can assume that

Z(p1) = Z(p) = Z(p2),

∀x ∈ dom(p1) p1(x) ∈ A ⇐⇒ x ∈ dom(p),

∀x ∈ dom(p2) p2(x) ∈ A ⇐⇒ x ∈ dom(p).

Proof. Apply Theorem 4.7 to get a full isometry p̄ of a finite metric space B that extends p and a natural
number M . Set

Ā = A ∪ p̄(A) ∪ . . . ∪ p̄2M−1(A) ∪ {y},
where y is a new point, i.e., a point not in B. Let δ = D(A) denote the density of A and fix an ε > 0 such
that ε 6 2δ. We turn Ā into a metric space by defining the distance between a, b ∈ Ā, a 6= b as follows.

dĀ(a, b) = dB(a, b) when a, b 6= y;

dĀ(a, y) = dB(a, x) when a 6= x, y;

dĀ(x, y) = ε.

We claim that (Ā, dĀ) is a metric space. We have to check the triangle inequality (other conditions are
obviously fulfilled). For this note that both Ā \ {y} and Ā \ {x} are isometrically embeddable into B, where
the triangle inequality is known to be satisfied. So one needs to prove two claims.

Claim 1. For any z ∈ Ā

dĀ(x, y) 6 dĀ(x, z) + dĀ(z, y).

If z ∈ {x, y} then the statement is obvious. If z 6∈ {x, y} then dĀ(x, z)+dĀ(z, y) > 2δ and dĀ(x,y) = ε 6 2δ

and Claim 1 follows.
Claim 2. For any z ∈ Ā

dĀ(x, z) 6 dĀ(x, y) + dĀ(y, z),

dĀ(z, y) 6 dĀ(z, x) + dĀ(x, y).

Note that for z 6∈ {x, y} one has dĀ(y, z) = dĀ(x, z). From this both inequalities follow immediately.
So Ā is a metric space. We denote it by Ā(ε) to signify the dependence on epsilon. Define a partial

isometry p̂ on Ā(ε) by
p̂(z) = p̄(z),

whenever z ∈ Ā and p̄(z) ∈ Ā; and p̂(p̄2M−1(x)) = y. Using p̄2M = 1B it is straightforward to check that p̂
is indeed a partial isometry. Now the construction of two extensions that are disjoint over Orbp(x) is easy.
Take, for example, two different ε1 6 2δ, ε2 6 2δ, ε1 6= ε2 such that

εi 6∈ {dB(x1, x2) : x1, x2 ∈ B},

let (Ai, pi) = (Ā(εi), p̂). Then Orbp1(x) and Orbp2(x) are disjoint over Orbp(x). �

The main power of Theorem 4.7 is the explicit construction of an extension of a partial isometry to a full
isometry of a finite metric space. Moreover, this extension is as independent as possible. For our purposes
we only need an extension to a partial isomorphism, but we want to keep the independence. Let us state
explicitly a corollary of the theorem that gives everything that we need.
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Corollary 4.10. For any finite metric space A and a partial isometry p there is finite metric space C, a partial
isometry p1 of C, which is an extension of p, and a natural number M such that

(i) Z(p) = Z(p1);
(ii) A ∪ pM1 (A) is the amalgam of A and pM1 (A) over (Z(p), idZ(p), p

M
1 |Z(p)).

(iii) for any x ∈ dom(p1)
p1(x) ∈ A ⇐⇒ x ∈ dom(p).

Moreover, the distances in C are taken from the additive semigroup generated by the distances in A, and hence
the density is preserved: D(C) = D(A).

Proof. Apply Theorem 4.7 to A and p to get a metric space B, a full isometry p̄ of B and a natural number
M . Now set

C = A ∪ p̄(A) ∪ . . . ∪ p̄M (A),

and p1 = p̄|A∪p̄(A)∪...∪p̄M−1(A). It is trivial to check that such a C and p1 satisfy the conditions. �

Definition 4.11. Let (M,d) be a metric space, and let x, y ∈ M . We say that the distance d(x, y) passes
through a point z ∈M if

d(x, y) = d(x, z) + d(z, y).

We are going to apply Corollary 4.10 to partial isometries that also preserve an ordering. That is why we
impose an additional assumption: all periodic points are fixed points, i.e., Z(p) = F(p).

Theorem 4.12. Let A be a finite metric space. Let p and q be two partial isometries of A such that Z(p) = F(p)
and Z(q) = F(q). Suppose F(p) ∩ F(q) 6= ∅. Then there are finite metric space B, extensions p̄, q̄ of p and q
respectively (these extensions are partial isometries of B) and an element w = tKv ∈ F (s, t), K 6= 0 such that

(i) Z(p̄) = Z(p) (= F(p)), Z(q̄) = Z(q) (= F(q));
(ii) dom(p̄) ∪ w(p̄, q̄)(A) is the free amalgam of dom(p̄) and w(p̄, q̄)(A) over F (p) ∩ F (q).

Moreover, the distances in B are taken from the additive semigroup generated by the distances in A, and hence
D(dom(p̄) ∪A) = D(A), D(dom(q̄) ∪A) = D(A).

Proof. Let

N =

⌈
2diam(A)

D(A)

⌉
.

Define inductively the sequence of elements wk ∈ F (s, t), extensions p̄k, q̄k and metric spaces Ak as follows:
Step 0: Let p̄0 = p, q̄0 = q, w0 = empty word, A0 = A;
Step k: If k is odd then apply Corollary 4.10 to p̄k−1 and Ak−1 to get p̄k and Mk; set q̄k = q̄k−1, wk =

sMkwk−1, Ak = Ak−1 ∪ dom(p̄k) ∪ ran(p̄k).
If k is even do the same thing with the roles of p and q interchanged.
We claim that p̄ = p̄2N+2, q̄ = q̄2N+2, B = A2N+2, andw = w2N+2 fulfill the requirements of the statement.

Let d denote the metric on B. It is obvious that F(p̄) = F(p) and F(q̄) = F(q) (this is given by Corollary 4.10
at each stage). The moreover part is also obvious, since it is fulfilled at every step of the construction. It
remains to show that for any x ∈ w(p̄, q̄)(A) and any y ∈ dom(p̄) one has

d(x, y) = min{d(x, z) + d(z, y) : z ∈ F(p) ∩ F(q)}. (1)

Note that by the last step of the construction for any x ∈ w(p̄, q̄)(A) and y ∈ dom(p̄) we have

d(x, y) = min{d(x, z) + d(z, y) : z ∈ F(q)}.
We first prove several claims.
Claim 1. It is enough to show that (1) holds for all x ∈ w(p̄, q̄)(A) and y ∈ F(q).
Proof of Claim 1. Assume (1) holds for all x ∈ w(p̄, q̄)(A) and y ∈ F(q). If y′ ∈ dom(p̄), then for some

c ∈ F(q)
d(x, y′) = d(x, c) + d(c, y′) = min{d(x, e) + d(e, y′) : e ∈ F(q)}. (2)

By the assumptions of the claim we get

d(x, y′) = d(x, z) + d(z, c) + d(c, y′) > d(x, z) + d(z, y′),

for some z ∈ F(p) ∩ F(q); and so, by (2),

d(x, y′) = d(x, z) + d(z, y′).
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This proves the claim.
Let wi(c) denote wi(p̄i, q̄i)(c).
Claim 2. Let x ∈ F(p)∪F(q), c ∈ A and suppose that for some z ∈ F(p)∩F(q) and for some i the distance

between wi(c) and x passes through z. Then for any j > i the distance between wj(c) and x passes through
the same point z.

Proof of Claim 2. This follows by induction. Here is an inductive step. Assume for definiteness that j + 1
is odd (the case when j + 1 is even, is similar). The distance between x and wj+1(c) passes through a point
z′ ∈ F(p) (z′ ∈ F(q) if j + 1 is even). Then

d(wj(c), x) = (wj(c), z) + d(z, x) 6 d(wj(c), z
′) + d(z′, x),

d(wj+1(c), x) = d(wj+1(c), z′) + d(z′, x),

but d(wj+1(c), z′) = d(wj(c), z
′) (this is because wj+1 = smwj and z′ is fixed by p). Hence

d(wj(c), x) 6 d(wj+1(c), x),

but also
d(wj+1(c), x) 6 d(wj+1(c), z) + d(z, x) = d(wj(c), z) + d(z, x) = d(wj(c), x),

and so d(wj+1(c), x) = d(wj(c), x). This proves the claim.
Claim 3. Let x ∈ F(p)4 F(q) (here 4 is symmetric difference of sets), c ∈ A. Suppose that the distance

between wi(c) and x does not pass through a point in F(p) ∩ F(q). Then d(wi(c), x) > bi/2cD(A).
Proof of Claim 3. Suppose first that x ∈ F(p) \ F(q). We prove the statement by induction on i. The base

of the induction is trivial, so we show the inductive step: assume the statement is true for i and we need to
show it for i + 1. If i is even then, since bi/2c = b(i + 1)/2c and because d(wi+1(c), x) = d(wi(c), x) (this
is since i is even and x ∈ F(p)) the statement follows immediately. So, assume i is odd. Then the distance
between wi+1(c) and x passes through a point z ∈ F(q). Now two things can happen. Suppose first for some
j 6 i the distance between wj(c) and z passes through a point z′ ∈ F(p)∩F(q). Then by Claim 2, the distance
between z and wi+1(c) must pass through z′. Now

d(wi+1(c), x) = d(wi+1(c), z) + d(z, x) = d(wi+1(c), z′) + d(z′, z) + d(z, x) > d(wi+1(c), z′) + d(z′, x).

And so the distance between wi+1(c) and x passes through a point z′ ∈ F(p) ∩ F(q). This contradicts
the assumptions of the claim. So, for no j 6 i does the distance between wj(c) and x pass through a
point in F(p) ∩ F(q). Then, applying induction to wi(c) and z, we get d(wi(c), z) > bi/2cD(A). But since
d(wi+1(c), z) = d(wi(c), z) and since d(x, z) > D(A) we get

d(wi+1(c), x) > bi/2cD(A) +D(A) > b(i+ 1)/2cD(A).

In the case when x ∈ F(q) \ F(q), the distance increases by D(A) at even stages of the construction, and the
rest of the argument for this case is similar. The claim is proved.

Now fix c ∈ A and y ∈ F(q). It remains to show that

d(w2N+2(c), y) = min{d(w2N+2(c), z) + d(z, y) : z ∈ F(p) ∩ F(q)}.
We have two cases (we will show, though, that Case 2 is impossible).
Case 1. For some i 6 2N + 2 the distance between wi(c) and y passes through a point z ∈ F(p) ∩ F(q).

Then
d(y, wi(c)) = min{d(y, z) + d(z, wi(c)) : z ∈ F(p) ∩ F(q)}.

Applying Claim 2 for j = 2N + 2, we get

d(y, w2N+2(c)) = min{d(y, z) + d(z, w2N+2(c)) : z ∈ F(p) ∩ F(q)}.
And the theorem is proved for this case.

Case 2. For no i 6 2N + 2 does the distance between wi(c) and y pass through a point in F(p) ∩ F(q).
Then by Claim 3

d(w2N+2(c), y) > (N + 1)D(A) > 2diam(A).

On the other hand, let z ∈ F(p)∩F(q) be any common fixed point. Then d(w2N+2(c), y) 6 d(w2N+2(c), z)+
d(z, y) = d(c, z) + d(z, y) 6 2diam(A). This gives a contradiction. So this case never happens. �

Remark 4.13. Note that the same result is also true for ordered metric spaces. For this one just has to apply
Proposition 4.5 at each step of the construction of p̄ and q̄.
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Before we apply this result to the classes of topological similarity let us mention another application. For
a subset A ⊆ U (A ⊆ QU) let IsoA(U) (IsoA(QU), respectively) denote the subgroup of isometries that
pointwise fix A. Recall a theorem of Julien Melleray from [Mel10].

Theorem 4.14 (Melleray). Let U be the Urysohn space, and let A,B ⊂ U be two finite subsets. Then

IsoA∩B(U) = 〈IsoA(U), IsoB(U)〉.

Let us give an equivalent reformulation of the above result.

Theorem 4.15 (Melleray). Let U be the Urysohn space, and let A,B ⊂ U be two finite subsets. Then for any
ε > 0, for any p ∈ IsoA∩B(U), and for any finite C ⊆ U there is q ∈ 〈IsoA(U), IsoB(U)〉 such that

∀x ∈ C d(p(x), q(x)) < ε.

We show that one can actually eliminate the epsilon in the above reformulation.

Theorem 4.16. Let U be the Urysohn space, and let A,B ⊂ U be two finite subsets. Then for any p ∈ IsoA∩B(U)
and for any finite C ⊆ U there is q ∈ 〈IsoA(U), IsoB(U)〉 such that

∀x ∈ C p(x) = q(x).

Proof. Without loss of generality we may assume that A ⊆ C and B ⊆ C. If D = C ∪ p(C), then p|C is a
partial isometry of D. Define two partial isometries p1 and p2 of D by

∀x ∈ A p1(x) = x,

∀x ∈ B p2(x) = x.

Now apply Theorem 4.12 to p1, p2 and D to get a metric space D′ and extension q1 of p1 and q2 of p2, and a
word w ∈ F2. Extend q1 to q′1 by setting

∀x ∈ C q′1(w(q1, q2)(x)) = w(q1, q2)(p(x)).

Such a q′1 is then a partial isometry of D′. This follows from the fact that

w(q1, q2)(C) ∪ dom(q1)

is an amalgam of w(q1, q2)(C) and dom(q1) over F (p1) ∩ F (p2) = A ∩B ⊆ F (p). Indeed, if y ∈ dom(q1) and
x ∈ C then

d
(
q1(y), w(q1, q2)(p(x))

)
=

min
{
d
(
q1(y), z

)
+ d
(
z, w(q1, q2)(p(x))

)
: z ∈ F (p1) ∩ F (p2)

}
=

min
{
d
(
q1(y), q1(z)

)
+ d
(
w(q1, q2)(p(z)), w(q1, q2)(p(x))

)
: z ∈ F (p1) ∩ F (p2)

}
=

min
{
d(y, z) + d(z, x) : z ∈ F (p1) ∩ F (p2)

}
=

min
{
d(y, z) + d(z, w(q1, q2)(x)) : z ∈ F (p1) ∩ F (p2)

}
= d(y, w(q1, q2)(x)).

Now extend q′1 and q2 to full isometries (we still denote them by the same symbols) and set

q = w−1(q′1, q2)q′1w(q′1, q2).

Then for any x ∈ C, p(x) = q(x), and q′1 ∈ IsoA(U), q2 ∈ IsoB(U). �

Note that if we start from metric spaces with rational distances, then the space D′, constructed in the
proof, would also have rational distances. And we arrive at the

Corollary 4.17. Let QU be the rational Urysohn space, and let A,B ⊂ QU be two finite subsets. Then

IsoA∩B(QU) = 〈IsoA(QU), IsoB(QU)〉.

Before showing another application of our extension result we need the following easy observation.
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Lemma 4.18. Let p, q be partial isometries of the Urysohn space U such that dom(p) = dom(q), and let

{ci}ni=1 = dom(p).

For any ε > 0 there are partial isometries p̄, q̄ of U such that
dom(p̄) = dom(p) = dom(q) = dom(q̄),

∀i d(p̄(ci), p(ci)) < ε, d(q̄(ci), q(ci)) < ε,

and the sets dom(p), p̄(dom(p)), q̄(dom(p)) are pairwise disjoint.

Proof. Set A = dom(p)∪ p(dom(p))∪ q(dom(p)). Let {ai}ni=1, {bi}ni=1 be new symbols, disjoint from all other
data. Set

B = {ci} ∪ {p(ci)} ∪ {q(ci)} ∪ {ai} ∪ {bi}.
Let ε > 0 be given. We may decrease it to ensure that ε < D(A). Now define the metric on B as follows. The
metric on A is the one inherited from U. For x ∈ A set

d(ai, x) =

{
d(p(ci), x) if x 6= p(ci);

ε if x = p(ci);

d(bi, x) =

{
d(q(ci), x) if x 6= q(ci);

ε if x = q(ci);

d(ai, bj) =

{
d(p(ci), q(cj)) if p(ci) 6= q(cj);

ε if p(ci) = q(cj).

It is routine to check that d is indeed a metric on A, and we leave this to the reader. Finally, set

p̄(ci) = ai q̄(ci) = bi.

Then p̄ and q̄ satisfy the conclusions of the lemma. �

One of the corollaries from the results in [Sol05] is that the group Aut(U) is topologically 2-generated, in
other words there is a pair of isometries (f, g) such that the group 〈f, g〉 is dense in Aut(U). If Λ is the set of
pairs that generate a dense subgroup, then

Λ = {(f, g) ∈ Aut(U)×Aut(U) : ∀ε > 0 ∀h ∀n ∀{ci}ni=1 ∃w ∀i d(w(f, g)(ci), h(ci)) < ε}.

Theorem 4.19. Λ is a dense Gδ-subset of Aut(U)×Aut(U).

Proof. Let {hj}∞j=1 be a dense subset of Aut(U), and {ci}∞i=1 be a dense set of points in U. Set

B(n,m, j) = {(f, g) ∈ Aut(U)×Aut(U) : ∃w d(w(f, g)(ci), hj(ci)) < 1/n for 1 6 i 6 m}.
Each B(n,m, j) is open and

Λ =
⋂
n,m,j

B(n,m, j),

hence Λ is Gδ. It remains to check that all of the B(n,m, j) are dense. Fix m,n, and j. Let p, q be partial
isometries of U, ε > 0, and without loss of generality we assume that dom(p) = dom(q) and that {ci}mi=1 ⊆
dom(p). Let h̃j be the partial isometry given by the restriction of hj onto {ci}. By ultrahomogeneity of U it is
enough to show that there are partial isometries p̃, q̃ such that

d(p̃(c), p(c)) < ε, d(q̃(c), q(c)) < ε for all c ∈ dom(p)

and a word w such that
d(w(p̃, q̃)(ci), h̃j(ci)) < 1/n

for all i ∈ {1, . . . ,m}. By Lemma 4.18 we may find p̄, q̄ such that

dom(p̄) = dom(p) = dom(q) = dom(q̄),

d(p̄(c), p(c)) < ε, d(q̄(c), q(c)) < ε for all c ∈ dom(p)

and
dom(p), p̄(dom(p)), q̄(dom(p))
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are pairwise disjoint. Now add a common fixed point z to p̄, q̄ and h̃j (and denote the new partial isometries
still by p̄, q̄ and h̃j .)

We can now apply Theorem 4.12 to the partial isometries p̄, q̄ and the set

A = dom(p̄) ∪ p̄(dom(p̄)) ∪ q̄(dom(p̄)) ∪ h̃j(dom(p̄)).

This gives us partial isometries p′, q′ that extend p̄ and q̄ and a word w1.
The next step is to extend p′ to p̃ by setting

p̃
(

(w1(p′, q′))(ci)
)

= w1(p′, q′)(h̃j(ci)).

We claim that p̃ is still a partial isometry. The argument is similar to the one in the proof of Theorem 4.16.
We have {z} = F (p′) ∩ F (q′) ∩ F (h̃j). Then for any y ∈ dom(p′) and any ci

d
(
p′(y), w1(p′, q′)(h̃j(ci))

)
= d(p′(y), z) + d

(
z, w1(p′, q′)(h̃j(ci))

)
=

d(p′(y), p′(z)) + d
(
w1(p′, q′)(h̃j(z)), w1(p′, q′)(h̃j(ci))

)
=

d(y, z) + d(z, ci) = d(y, z) + d(w1(p′, q′)(z), w1(p′, q′)(ci)) =

d(y, z) + d(z, w1(p′, q′)(ci)) = d(y, w1(p′, q′)(ci)),

and hence d
(
p̃(y), w1(p′, q′)(h̃j(ci))

)
= d(y, w1(p′, q′)(ci)).

Finally set w = w−1
1 sw1 then for q̃ = q′

w(p̃, q̃)(ci) = h̃j(ci) = hj(ci) for all i.

So B(n,m, j) is dense and by Baire Theorem Λ is dense Gδ. �

5. ISOMETRIES OF THE ORDERED URYSOHN SPACE

There is a rich variety of linearly ordered Fraïssé limits, of which the countable dense linear ordering
without endpoints is the simplest example. In fact, as proved in [KPT05], if the group of automorphisms of
a particular Fraïssé class K is extremely amenable, then there is a linear ordering on the Fraïssé limit of K
that is preserved by all automorphisms. Moreover, the ordered limit is still Fraïssé , i.e., is a Fraïssé limit of a
Fraïssé class.

We consider another example of a linearly ordered Fraïssé limit: the ordered rational Urysohn space QU≺.
Let us briefly recall the definition of this structure. Formally speaking, one has to consider the Fraïssé class

M of finite ordered metric spaces with rational distances. Then QU≺ is, by definition, the Fraïssé limit ofM.
Intuitively one can think of this structure as a classical rational Urysohn space with a linear ordering on top
(such that ordering is isomorphic to the ordering of the rationals) and such that this ordering is independent
of the metric structure.

Our goal is to prove that every two-dimensional class of topological similarity in the group of automor-
phisms of QU≺ is meager. We would like to emphasize that the structure of conjugacy classes in Aut(Q) and
Aut(QU≺) is substantially different. As was mentioned earlier there is a generic conjugacy class in Aut(Q),
while it is not hard to derive from results in [KR07], that each conjugacy class in Aut(QU≺) is meager.

Recall (see [KR07], Definition 3.3)

Definition 5.1. A class K of finite structures satisfies the weak amalgamation property (WAP for short) if
for every A ∈ K there are B ∈ K and an embedding e : A → B such that for all C ∈ K, D ∈ K and all
embeddings i : B → C, j : B → D there are E ∈ K and embeddings k : C → E, l : D → E such that
k ◦ i ◦ e = l ◦ j ◦ e, i.e. in the following diagram the paths from A to E commute (but not necessarily paths
from B to E).

C

k

  
A

e // B

i

>>

j

  

E

D

l

>>
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A class K satisfies the local weak amalgamation property if for some A ∈ K weak amalgamation holds for
the class of structures B ∈ K that extend A.

Definition 5.2. Let K be a Fraïssé class. We associate with it a class of structures Kp. Elements of Kp are
partial isomorphisms of K, more precisely tuples

(A; p : A′ → A′′),

where A, A′ and A′′ ∈ K, A′, A′′ ⊆ A and p is an isomorphism.

Theorem 5.3 (Kechris–Rosendal, see [KR07], Theorem 3.7). The group of automorphisms of a Fraïssé class
K has a non-meager conjugacy class if and only if class Kp satisfies the local weak amalgamation property.

Proposition 5.4. Every conjugacy class in Aut(QU≺) is meager.

Proof. By Theorem 5.3 it is enough to show that the classMp does not have the local WAP. Let Ā = (A, φ :
A′ → A′′) ∈ Mp, and assume without loss of generality that φ has at least one non-fixed point (otherwise
take an extension of φ). We claim that the class of structures that extend A does not have WAP.

Fix B̄ = (B, ψ : B′ → B′′) that extends A and assume for notational simplicity that A ⊆ B. Let z ∈ A′

be such that φ(z) 6= z and let Orbφ(z) be the orbit of z under φ. Then Orbψ(z) ⊇ Orbφ(z). Since we have
ordering φ(z) 6= z implies that z is not a periodic point of ψ, because for ordered structures periodic points
coincide with fixed points. Let x ∈ B′ be “the beginning of the orbit of z”, that is x ∈ Orbψ(z) and x 6∈ ran(ψ).
Such an x exists and is unique. Let m0 ∈ N be such that x = ψ−m0(z). Now take (by Lemma 4.9 and
Proposition 4.5) two structures C̄ = (C, σ : C′ → C′′) ∈ Mp, D̄ = (D, τ : D′ → D′′) ∈ Mp such that
B̄ ⊆ C̄ and B̄ ⊆ D̄ such that x 6∈ ran(σ), x 6∈ ran(τ) and Orbσ(x) and Orbτ (x) are disjoint over Orbφ(x). We
claim that there is no weak amalgamation of C̄ and D̄ over B̄ and Ā. Indeed, suppose there is a structure
(E, ξ : E′ → E′′) together with two embeddings k : C → E and l : D → E such that k(a) = l(a) for all
a ∈ A′. In particular, k(z) = l(z). But the maps k, l are not only isometries but also preserve partial isometries
φ, ψ, σ, τ . Hence

k(σm(z)) = l(τm(z))

for any m ∈ Z whenever both sides are defined. And thus k(x) = k(σ−m0(z)) = l(τ−m0(z)) = l(x). Suppose,
for definiteness, that |Orbσ(x)| > |Orbτ (x)| or, in other words, there is m1 ∈ N such that σm1(x) is defined
but τm1+1(x) is not (i.e., τm1(x) 6∈ dom(τ)). Then Orbσ(x) extends Orbτ (x) over Orbψ(x). This is because

k−1(l(τm(z))) = σm(z) ∀m ∈ {0, . . . ,m1}.

This contradicts the choice of Orbσ(x) and Orbτ (x). �

For classes of topological similarity the situation is rather different. All non-trivial elements in Aut(QU≺)
fall into a single class of topological similarity. And more generally, if K is any countable linearly ordered
structure and Aut(K) is endowed with the topology of pointwise convergence (K is discrete here), then
Aut(K) has exactly two classes of topological similarity (unless Aut(K) = {id}, then, of course, there is only
one): all non-trivial automorphisms generate a discrete copy of Z and hence fall into a single class. Thus, in
spite of the previous proposition, it makes sense to ask if there is a non-meager two-dimensional similarity
class in Aut(QU≺).

We define the notions of elementary and piecewise elementary pairs of partial isomorphisms of QU≺ and
the notion of liberation exactly as for the partial isomorphisms of the rationals.

It turns out that the analog of Theorem 3.15 for the ordered Urysohn space holds. Let us first briefly sketch
the idea of the proof before diving into the details. We will prove that, again, for a generic pair there is a
sequence of reduced words, such that this pair converges along it. One can repeat all the arguments up to
Lemma 3.12 (only obvious changes are necessary). So one gets for a piecewise elementary pair (p, q) a triple
(p′, q′, w) that liberates p in (p, q). But now, contrary to the case of the rationals, one cannot in general declare
that p′(w(p′, q′)(c)) = c for c ∈ Ess(p)∪Ess(q), since such a p′ may be not an isometry. At this moment we
have to take further extensions of p′ and q′. But once an analog of Lemma 3.13 is proved for the Urysohn
case, the rest of Theorem 3.15 goes unchanged.

If p is a partial isometry, we can use amalgamation of its domain with a one point metric space over the
empty set to add a fixed point for p. Using this observation the following two lemmata, which are analogs of
Lemma 3.12 and Lemma 3.11, are proved as for the rationals, and we omit the details.
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Lemma 5.5. Let (p, q) be a piecewise elementary pair of partial isomorphisms of QU≺ and assume a triple
(p′, q′, w) liberates p [liberates q] in (p, q). Let u = tnv [u = smv] be a reduced word such that uw is irreducible.
Then there is a triple (p′′, q′′, uw) that liberates p [liberates q] in (p, q). Moreover, one can take p′′ to be an
extension of p′ and q′′ to be an extension of q′.

Lemma 5.6. Let (p, q) be a piecewise elementary pair of partial isomorphisms of QU≺ and u ∈ F (s, t) be a
reduced word. Then there is a triple (p′, q′, vu) that liberates p in (p, q) [liberates q] and such that |vu| = |v|+ |u|.

Lemma 5.7. For any pair (p, q) of partial isomorphisms of the QU≺ and any word u ∈ F (s, t) there are
extensions p′ and q′ of p and q respectively and a reduced word w = ∗u such that w(p′, q′)(c) = c for any
c ∈ dom(p) ∪ dom(q).

Proof. We can assume that (p, q) is piecewise elementary. By Lemma 5.6 there are extensions p̃, q̃ of p and q
and a reduced word vu such that (p̃, q̃, vu) liberates p in (p, q). Now apply Theorem 4.12 (with Remark 4.13
and Lemma 3.11) to p̃, q̃ and

A = dom(p̄) ∪ ran(p̄) ∪ dom(q̄) ∪ ran(q̄)

to get extensions p̄ and q̄ and a reduced word v′. Note that v′vu is reduced, because v starts from a power
of t and v′ by construction ends in a power of s. By the item (ii) of Theorem 4.12 we can extend p̄ to p′ by
declaring

p′|v′vu(dom(p)∪dom(q)) = 1.

Set q′ = q̄ and w = (v′uv)−1s(v′uv). It is easy to see that w(p′, q′)(c) = c holds for any c ∈ dom(p) ∪
dom(q). �

Theorem 5.8. Every two-dimensional class of topological similarity in Aut(QU≺) is meager.

Proof. Repeat the proofs of Lemma 3.14 and Theorem 3.15 using Lemma 5.7 instead of Lemma 3.13. �

Remark 5.9. All the results in this section can be proved for the ordered random graph in the same way, as
they were proved for the ordered rational Urysohn space. One can also formally deduce this case from the
above results viewing graphs as metric spaces with all the distances in {0, 1, 2}.
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