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Abstract

We introduce the concept of an L' full group associated with a measure-
preserving action of a Polish normed group on a standard probability space. Such
groups are shown to carry a natural separable complete metric, and are thus Polish.
Our construction generalizes L! full groups of actions of discrete groups, which have
been studied recently by the first author.

We show that under minor assumptions on the actions, topological derived
subgroups of L' full groups are topologically simple and — when the acting group is
locally compact and amenable — are whirly amenable and generically two-generated.
L! full groups of actions of compactly generated locally compact Polish groups are
shown to remember the L' orbit equivalence class of the action.

For measure-preserving actions of the real line (also often called measure-
preserving flows), the topological derived subgroup of an L! full groups is shown to
coincide with the kernel of the index map, which implies that L' full groups of free
measure-preserving flows are topologically finitely generated if and only if the flow
admits finitely many ergodic components. The latter is in a striking contrast to the
case of Z-actions, where the number of topological generators is controlled by the
entropy of the action.

We also study the coarse geometry of the L! full groups. The L' norm on the
derived subgroup of the L' full group of an aperiodic action of a locally compact
amenable group is proved to be maximal in the sense of Rosendal. For measure-
preserving flows, this holds for the L' norm on all of the L' full group.
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CHAPTER 1

Introduction

Full groups were introduced by H. Dye [Dye59| in the framework of measure-
preserving actions of countable groups as measurable analogues of unitary groups
of von Neumann algebras, by mimicking the fact that the latter are stable under
countable cutting and pasting of partial isometries. These Polish groups have
since been recognized as important invariants as they encode the induced partition
of the space into orbits. A similar viewpoint applies in the setup of minimal
homeomorphisms on the Cantor space |[GPS99|, where likewise the full groups are
responsible for the orbit equivalence class of the action.

Full groups are defined to consist of transformations which act by a permutation
on each orbit. When the action is free, one can associate with an element A of
the full group a cocycle defined by the equation h(z) = pp(x) - z. From the point
of view of topological dynamics, it is natural to consider the subgroup of those h
for which the cocycle map is continuous, which is the defining condition for the
so-called topological full groups. The latter has a much tighter control of the action,
and encodes minimal homeomorphisms of the Cantor space up to flip-conjugacy
(see |GPS99)).

A celebrated result of H. Dye states that all ergodic Z-actions produce the
same partition up to isomorphism, and hence the associated full groups are all
isomorphic. The first named author has been motivated by the above to seek for the
analog of topological full groups in the context of ergodic theory, which was achieved
in [LM18| by imposing integrability conditions on the cocycle. In particular, he
introduced L! full groups of measure-preserving ergodic transformations, and showed
based on the result of R. M. Belinskaja |[Bel68| that they also determine the action
up to flip-conjugacy. Unlike in the context of Cantor dynamics, these L' full groups
are uncountable, but they carry a natural Polish topology.

In this work, we widen the concept of an L' full group and associate such
an object with any measure-preserving Borel action of a Polish normed group
(the reader may consult Appendix [A] for a concise reminder about group norms).
Quasi-isometric compatible norms will result in the same L! full groups, so actions
of Polish boundedly generated groups have canonical L! full groups associated
with them based on to the work of C. Rosendal [Ros22]. Our study also parallels
the generalization of the full group construction introduced by A. Carderi and
the first named author in [CLM16|, where full groups were defined for Borel
measure-preserving actions of Polish groups.

1.1. Main results

Let G be a Polish group with a compatible norm |-|| and consider a Borel
measure-preserving action G ~ X on a standard probability space (X, u). The
group action defines an orbit equivalence relation R by declaring points x1, 29 € X
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2 1. INTRODUCTION

equivalent whenever G - x1 = G - 2. The norm induces a metric onto each R-class
via D(z1,22) = infgeq{||lg|| : gz1 = z2}. Following [CLM16|, a full group of the
action is denoted by [R¢| and is defined as the collection of all measure-preserving
T € Aut(X, p) that satisfy #RgTx for all z € X. The L! full group [G ~ X];
is given by those T € [R¢] for which the map X > « — D(x,Tx) is integrable.
This defines a subgroup of [R¢], and we show in Theorem that these groups
are Polish in the topology of the norm ||T|| = [y D(x,Tx)du(z). The strategy
of establishing this statement is analogous to that of [CLM18|, where the Polish
topology for full groups [R¢| was defined.

It is a general and well-known phenomenon in the study of all kinds and variants
of full groups that their structure is usually best understood through the derived
subgroups. Our setup is no exception.

THEOREM 1. The topological derived group of any aperiodic L' full group is
equal to the closed subgroup generated by involutions.

The argument needed for Theorem [I] is quite robust. We extract the idea
used in [LM18|, isolate the class of finitely full groups, and show that under mild
assumptions on the action, Theorem [I| holds for such groups. We provide these
arguments in Section [3| and in Corollary in particular. Alongside we mention
Corollary which implies that L' full groups of ergodic actions are topologically
simple.

For the rest of our results we narrow down the generality of the acting groups,
and consider locally compact Polish normed groups. In Chapter [4] we show that
if H < G is a dense subgroup of a locally compact Polish normed group G then
[H ~ Xy is dense in [G ~ X ;. In fact, we prove a considerably stronger statement
by showing that for each T' € [G ~ X ] and € > 0 there is S € [H ~ X ] such that
esssup,cxy D(T'z, Sz) < e.

Recall that a topological group is amenable if all of its continuous actions on
compact spaces preserve some Radon probability measure, and that it is whirly
amenable if it is amenable and moreover every invariant Radon measure is supported
on the set of fixed points. The following is a combination of Theorem and

Corollary

THEOREM 2. Let G ~ X be a measure-preserving action of a locally compact
Polish normed group. Consider the following three statements:

(1) G is amenable;

(2) the topological derived group D(]|G ~ X11) is whirly amenable.

(3) the L' full group [G ~ X1 is amenable;
The implications () = (2) = always hold. If G is unimodular and the
action is free, then the three statements above are all equivalent.

When the acting group is amenable and orbits of the action are uncountable, we
are able to compute the topological rank of the derived L' full groups — that is, the
minimal number of elements needed to generate a dense subgroup. Theorem [5.19]
contains a stronger version of the following.

THEOREM 3. Let G ~ X be a measure-preserving action of an amenable
locally compact Polish normed group on a standard probability space (X, ). If all
orbits of the action are uncountable, then the topological rank of the derived L' full
group D([G ~ X]1) is equal to 2.
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It is instructive to contrast the situation with the actions of finitely generated
groups, where finiteness of the topological rank of the derived L! full group is
equivalent to finiteness of the Rokhlin entropy of the action [LM21].

Our most refined understanding of L' full groups is achieved for free actions
of R, which are known as flows. All the results we described so far are valid
for all compatible norms on the acting group. When it comes to the actions of
R, however, we consider only the standard Euclidean norm on it. Just like the
actions of Z, flows give rise to an important homomorphism, known as the index
map. Assuming the flow is ergodic, the index map can be described most easily as
R~ X]1 3T [y |pr|du, where pp is the cocycle of T. Chapter |§| is devoted to
the analysis of the index map for general R-flows.

The most technically challenging result of our work is summarized in Theo-
rem which identifies the derived L' full group of a flow with the kernel of the
index map, and describes the abelianization of [R ~ X ;.

THEOREM 4. Let F be a measure-preserving flow on (X, u). The kernel of
the index map s equal to the derived L' full group of the flow, and the topological
abelianization of [F|i is R.

Theorem [4] parallels the known results for Z-actions from [LM18]. The structure
of its proof, however, has an important difference. We rely crucially on the fact
that each element of the full group acts in a measure-preserving manner on each
orbit. This allows us to use Hopf’s decomposition (described in Appendix in
order to separate any given element T' € [R ~ X ]; into two parts — recurrent and
dissipative. If the acting group were discrete, the recurrent part would reduce to
periodic orbits only. This is not at all the case for non-discrete groups, hence we
need a new machinery to understand non-periodic recurrent transformations. To
cope with this, we introduce the concept of an intermitted transformation, which
plays the central role in Chapter [8] and which we hope will find other applications.

Theorems [3] and [4] can be combined to obtain estimates for the topological rank
of the whole L' full groups of flows, which is the content of Proposition m

THEOREM 5. Let F be a free measure-preserving flow on a standard probability
space (X, ). The topological rank rtk([Fl1) is finite if and only if the flow has
finitely many ergodic components. Moreover, if F has exactly n ergodic components
then

n+1<rk([F];) <n+3.

In particular, the topological rank of the L' full group of an ergodic flow is
equal to either 2, 3 or 4. We conjecture that it is always equal to 2, and more
generally that the topological rank of the L' full group of any measure-preserving
flow is equal to n + 1 where n is the number of ergodic components.

Our work connects to the notion of L orbit equivalence, an intermediate notion
between orbit equivalence and conjugacy. It can be traced back to the work of
R. M. Belinskaja [Bel68| but recently attracted more attention. Stated in our
framework, two flows are L' orbit equivalent if they can be conjugated so that the
first flow is contained in the L' full group of the second and vice versa. A symmetric
version of Belinskaja’s theorem is that ergodic Z-actions are L' orbit equivalent
if and only if they are flip conjugate. It is very natural to wonder whether this
amazing result has a version for flows. Our Theorem implies the following.
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THEOREM 6. If two measure-preserving ergodic flows are L' orbit equiva-
lent, then they admit some cross-sections whose induced tmnsformationﬂ are flip-
conjugate.

We do not know whether the above result is optimal, that is, whether having
flip-conjugate cross-sections implies L' orbit equivalence, but it seems unlikely. It
is tempting to think that the correct analogue of Belinskaja’s theorem would be a
positive answer to the following question.

QUESTION 1.1. Let Fi and Fo be free ergodic measure-preserving flows which
are L' orbit equivalent. Is it true that there is o € R* such that Fi and Fs o mq
are isomorphic, where mg, denotes the multiplication by «?

Let us also mention that Theorem [6] implies that there are uncountably many
L' full groups of ergodic free measure-preserving flows up to (topological) group
isomorphism (see Corollary and the paragraph right after its proof).

Finally, we also investigate the coarse geometry of the L! full groups. We
establish that the L! norm is maximal (in the sense of C. Rosendal [Ros22], see also
Appendix on the derived subgroup of an L! full group of an aperiodic measure-
preserving action of any locally compact amenable Polish group (Theorem [5.5). For
the measure-preserving flows, the L' norm is, in fact, maximal on the whole full

group (Theorem [10.18)).

1.2. Preliminaries

1.2.1. Ergodic theory. Our work belongs to the field of ergodic theory, which
means that all the constructions are defined and results are proven up to null sets.
On a number of occasions, we allow ourselves to deviate from the pedantic accuracy
and write “for all x...” when we really ought to say “for almost all x...”, etc.
The only part where certain care needs to be exercised in this regard appears in
Chapter 2l We define L' full groups for Borel measure-preserving actions of Polish
normed groups, and we need a genuine action on the space X for these to make sense
just as in |[CLM16|. Boolean actions (also called near actions) of general Polish
groups do not admit realizations in general [GTWO5|, and even when they do, it
could happen that different realizations yield different full groups. This subtlety
disappears once we move our attention to locally compact group actions, which is
the case for Chapter [4] and onwards. All Boolean actions of locally compact Polish
groups admit Borel realizations which are all conjugate up to measure zero (and
hence have the same full group), so null sets can be neglected just as they always
are in ergodic theory.

By a standard probability space we mean the unique (up to isomorphism)
separable atomless measure space (X, 1) with u(X) = 1, i.e., the unit interval [0, 1]
with the Lebesgue measure. A few times in Chapter [5|and Appendix we refer to
a standard Lebesgue space, by which we mean a separable finite measure space,
1(X) < oo, thus in contrast to the notion of the standard probability space allowing
atoms and omitting the normalization requirement. We denote by Aut(X, u) the
group of all measure-preserving bijections of (X, 1) up to measure zero. This is
a Polish group for the weak topology, defined by T,, — T if and only if for all

L\We refer the reader to Definition [10.11] and the paragraph that follows it for details on the
measure-preserving transformation one associates to a cross-section.
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A C X Borel, p(T,(A) AT(A)) — 0. The weak topology is a Polish group topology,
see |Kecl0, Sec. 1]. Given T € Aut(X, p), its support is the set

suppT = {z € X : T(x) # z}.

A measure-preserving bijection T is called periodic when almost all its orbits
are finite. Periodicity implies the existence of a fundamental domain A for T,
namely a measurable set which intersects every T-orbit at exactly one point. Since
the ambient measure p is finite, the existence of a fundamental domain actually
characterizes periodicity.

1.2.2. Orbit equivalence relations. Any group action G ~ X induces the
orbit equivalence relation Rg~ x, where two points z,y € X are Rg~ x-equivalent
whenever G -x = G - y. We will usually write this equivalence relation simply as R¢g
for brevity. For the actions Z ~ X generated by an automorphism 7" € Aut(X, p),
we denote the corresponding orbit equivalence relation by Rr. For clarity, we may
sometimes want to name a measure-preserving action as « and write G A X. Then
for all g € G we denote by «a(g) the measure-preserving transformation of (X, )
induced by the action of g.

We encounter various equivalence relations throughout this monograph. An
equivalence class of a point € X under the relation R is denoted by [z]z and the
saturation of a set A C X is denoted by [A]r and is defined to be the union of
R-equivalence classes of the elements of A: [A]r = (J,c4[z]r. In particular, [z]r..
is the orbit of z under the action of T. The reader may notice that the notation
for a saturation [A]g resembles that for the full group of an action [G ~ X (see
Chapter . Both notations are standard, and we hope that confusion will not arise,
as it applies to objects of different nature — sets and actions, respectively.

1.2.3. Actions of locally compact groups. Consider a measure-preserving
action of a locally compact Polish (equivalently, second-countable) group G on a
standard Lebesgue space (X, 1). A complete section for the action is a measurable
set C C X that intersects almost every orbit, i.e., u(X \ G-C) = 0. A cross-section
is a complete section C C X such that for some non-empty neighborhood of the
identity U € G we have Uc N Ucd = @ whenever ¢,/ € C are distinct. When
the need to mention such a neighborhood U explicitly arises, we say that C is a
U-lacunary cross-section.

With any cross-section C one associates a decomposition of the phase space
known as the Voronoi tessellation. Slightly more generally, Appendix defines the
concept of a tessellation over a cross-section, which corresponds to a set W C C x X
for which the fibers W, = {z € X : (¢,z) € W}, ¢ € C, partition the phase
space. Every tessellation W gives rise to an equivalence relation Ryy, where points
x,y € X are deemed equivalent whenever they belong to the same fiber W,, and to
the projection map myy : X — C that associates with each x € X the unique ¢ € C
which fiber W, the point = belongs to, and is therefore defined by the condition
(mw(z),xz) € W for all z € X.

When the action G ~ X is free, each orbit G-« can be identified with the acting
group. Such a correspondence g — gx depends on the choice of the anchor point x
within the orbit, but suffices to transfer structures invariant under right translations
from the group G onto the orbits of the action. For instance, if the acting group is
locally compact, then a right-invariant Haar measure A can be pushed onto orbits by
setting A\, (A) = {g € G : gz € A} as discussed in Section[£.2} Freeness of the action
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G ~ X gives rise to the cocycle map p : Rg~x — G which is well-defined by the
condition p(z,y) - ¢ = y. Elements of the full group [G ~ X] are characterized as
measure-preserving transformations 7' € Aut(X, i) such that (T'(z),z) € Re~x
for all z € X. With each T' € [G ~ X] one may therefore associate the map
pr : X — G, also known as the cocycle map, and defined by pr(z) = p(z, Tx).
Both the context and the notation will clarify which cocycle map is being referred
to.

All these concepts appear prominently in the chapters which deal with free
measure-preserving flows, that is actions of R on the standard probability space.
We use the additive notation for such actions: R x X > (x,7) — x +r € X. The
group R carries a natural linear order which is invariant under the group operation
and can therefore be transferred onto orbits. More specifically, given a free measure-
preserving flow R ~ X we use the notation x < y whenever = and y belong to
the same orbit and y = = + r for some r > 0. Every cross-section C of a free flow
intersects each orbit in a bi-infinite fashion — each ¢ € C has a unique successor
and a unique predecessor in the order of the orbit. One therefore has a bijection
oc : C — C, called the the first return map or the induced map, which sends
c € C to the next element of the cross-section within the same orbit. We also make
use of the gap function that measures the lengths of intervals of the cross-section,
ie., gapC(C) = p(C, UC(C))‘

There is also a canonical tessellation associated with a cross-section C which
partitions each orbit into intervals between adjacent points of C and is given by
We ={(c,z) € C x X : ¢ <z < oc(c)}. The associated equivalence relation Ry, is
denoted simply by R¢ and groups points (z,y) € Rr~x which belong to the same
interval of the tessellation, m¢(z) = mc(y). The Re-equivalence class of z € X is
equal to [2]g, = me(x) + [0, gape(me(x))).

Often enough we need to restrict sets and functions to an R¢-class. Since such a
need arises very frequently, especially in Chapter [0} we adopt the following shorthand
notations. Given a set A C X and a point ¢ € C the intersection AN [c]r. is denoted
simply by A(c). Likewise, A\YV¢(A) stands for A\({r e R: ¢+ 17 € AN|[c]r.}) and
corresponds to the Lebesgue measure of the set AN [c]r.. Moreover, \V¢(A) will
usually be shortened to AS(A), when the tessellation is clear from the context.



CHAPTER 2

L! full groups of Polish group actions

We begin by defining the key notion of interest for our work, namely the L! full
groups of measure-preserving Borel actions of Polish normed groups on a standard
probability space. Admittedly, the overall focus will be on actions of locally compact
groups, and flows in particular. Nonetheless, the concept of an L' full group can be
introduced for actions of arbitrary Polish normed groups, and we therefore begin
with this level of generality.

2.1. L' spaces with values in metric spaces
By a Polish metric space we mean a separable complete metric space.

DEFINITION 2.1. Let (X, p) be a standard probability space, let (Y,dy) be
a Polish metric space, and let é : X — Y be a measurable function. We define
the é-pointed L' space L1(X,Y) as the metric space of measurable functions
f:X =Y such that [ dy (é(z), f(x)) du(z) < +0o0, equipped with the metric

By (i) = [ dv (7o), folo) duo).
X
which is finite by the triangle inequality using the function é as the middle point.

PROPOSITION 2.2. Let (X, ) be a standard probability space and (Y, dy) be
a Polish metric space. (LL(X,Y),dy) is a Polish metric space for any measurable
function é: X =Y.

PROOF. The argument follows closely the classical proof that (L'(X,R),dg) is
a Polish metric space. To check completeness, let us pick a Cauchy sequence (f,,)nen
in L1(X,Y). Without loss of generality we may assume that cfy(fn, 1) <277,
n € N. Consider the sets A, = {z € X : dy(fu(2), fuy1(x)) > 1/n?}, n > 1.
Chebyshev’s inequality shows that u(A4,) < n?27", whence > u(A,) < occ. The
Borel-Cantelli lemma implies that (f,,(z))nen is pointwise Cauchy for almost every
x € X. Since (Y,dy) is complete, the pointwise limit of (f,,)nen exists, and we
denote it by f: X — Y. Define functions h,,h : X — RZ° by

<n 1€EN

and note that h € L!(X,R) by Fatou’s lemma. Finally, we conclude that

dy (fur f) = /X dy (fu(2), f(x)) du(z) < /X S dy (@), S (2)) dp(a)

k=n
- / (h() — ho(2)) dps(z) — 0,
X

7
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where the last convergence follows from Lebesgue’s dominated convergence theorem.

To verify separability, pick a countable dense set D C Y and note that the
subspace of maps taking values in D is dy-dense (in fact, this subspace is dense in
the much stronger sup metric). It then follows that the set of functions that take
only finitely many values (all of which are elements of D) is still dense. Finally,
one uses a dense countable subalgebra of the measure algebra on X and further
restricts this subspace to the functions that are measurable with respect to the
chosen subalgebra. The resulting countable collection is dense in L}(X,Y). O

The group of measure-preserving automorphisms Aut(X, 1) has a natural ac-
tion by composition on L}(X,Y), ie., (T - f)(z) = f(I''z). Note that every
automorphism acts by an isometry.

PROPOSITION 2.3. Let (X, 1) be a standard probability space, (Y, dy) be a Polish
metric space, and é : X =Y be a measurable function. The action of Aut(X, )
on LY(X,Y) is continuous.

ProOF. The argument mirrors the one in [CLM16, Prop. 2.9(1)]. Given
sequences T, — T and f, — f we need to show that T}, - f,, — T - f. Since the
action is by isometries,

dy (T« fu: T f) = dy (fo, T, ' T+ f) < dy (fu, f) + dy (f, T, 'T - f).

It therefore suffices to show that for any f € L1(X,Y’) and any convergent sequence
of automorphisms T, — T one has dy (f,T; o T - f) — 0 as n — co. The latter is
enough to check for functions that take only finitely many values since those are
dense in L}(X,Y). Suppose f is such a step function over a partition X = | |\, A;.
Convergence T,, — T implies u(T,; 1T (A;)AA;) — 0 for all 1 <4 < m, which easily
yields dy (f, T;'T - f) — 0. O

When Y is a Polish group, there is a natural choice of the function €, namely the
constant function é(z) = e, where e is the identity element of the group. We therefore
simplify the notation in this case and write L!(X,Y), omitting the subscript é.

Recall that a Polish normed group is a Polish group together with a com-
patible norm on it (see Appendix[A-1]). In particular, if (G, ||-||) is a Polish normed
group, there is a canonical choice of a complete metric on G, namely

de(u,v) = ([u™"v] + [lvu™)/2.

The corresponding space L' (X, G) is Polish by Proposition Moreover, it is a
Polish group under pointwise operations.

PROPOSITION 2.4. Let (G, ||-||) be a Polish normed group, and let G ~ X be a
Borel measure-preserving action on a standard probability space. The space L*(X, Q)
is a Polish normed group under the pointwise operations, (f - g)(x) = f(x)g(z),

F7Y (@) = f(@)7", and the norm | fIT D = [ |1 f(@)]| dpe).

PROOF. The space L!(X,G) can equivalently be defined as the collection of

all measurable functions f : X — G with finite norm, ||f||Ifl(X’G) < 00. Using the
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properties of the norm ||| on G,

| fglly =/X||f(m)g(x)||du(x)S/X(Ilf(x)ll+Hg(:ﬁ)|\)du(x)

LY(x,G LY(x,G
= |I£ly D+ glly 9,

1 1
=My = / 1 (@)l dp(a) < / 1 @)l dpat) = (1175,
b's X
H 1 . . L'(X,G)
ence, L' (X, G) is closed under the group operations and |||
norm on it.
To show that group operations are continuous, it suffices to check that for
any g € LY(X,G) and any sequence f, € L'(X,G), n € N, converging to zero,
LY(X,G) . 1 LY(X,@)
Il fnlly — 0, there is a subsequence (f,, )x such that ||gfn, 97 |1
k — oo (see, for instance, [BO10, Thm 3.4 and Lem. 3.5]).
Since f,, converges to 0 in L!(X, G), we may pass to a subsequence (f,, )r such
that || fn, (z)]| — 0 for almost all x € X. Let M = maxk{||fnk||1fl(X’G)} and note
that for all k

[ 1o@ @@ dute) < [ @)l + 1) dite) < 20l S5 0,
X X

It remains to apply Lebesgue’s dominated convergence theorem to the sequence
1
9fn,9 1, k € N, concluding that ||gfnkg*1||1f (X.6) 5 0. O

is a group

— 0 as

2.2. L! full groups of Polish normed group actions

Let (G, ||]|) be a Polish normed group, and let G ~ X be a measure-preserving
Borel action on a standard probability space (X, ). Let also Rg € X x X denote
the equivalence relation induced by this action, namely

Ra={(z,g-2):2€ X,g€G}.
The norm induces a metric on each Rg-equivalence class via

(2.1) D(z,y) = inf {|lu] : uzx =y} for (z,y) € Re.

Properties of the metric are straightforward except, possibly, for the implication
D(z,y) =0 = x =y. To justify the latter, let u,, € G, n € N, be a sequence such
that u,, — e and u,z = y. Elements u, tug, n € N, belong to the stabilizer of x. By
Miller’s theorem [Mil77], stabilizers of all points are closed, whence ug = lim,, u,, *ug
fixes . Thus ugx = x, and z = y as claimed.

A. Carderi and the first named author introduced in [CLM16| orbit full groups
of Borel measure-preserving Polish group actions on standard probability spaces,
which we will simply call full groups. Given such an action G ~ X, they define
the full group of the action [G ~ X] to consist of those measure-preserving
transformations 7' € Aut(X, u) that preserve the equivalence classes of Rg:

(G~ X]={T € Aut(X,pn) : V2 € X (z,T(z)) € Rg}.

They showed that full groups are Polish with respect to the natural topology of
convergence in measure.

Suppose that the acting group G is furthermore endowed with a compatible
norm, which therefore induces a metric D on the equivalence classes of Rg. We
define a subgroup of [G ~ X] that consists of those automorphisms 7" for which the
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map x — D(x,Tx) is integrable. Such a subgroup, we argue in this section, also
carries a natural Polish topology.

DEFINITION 2.5. Let G ~ X be a Borel measure-preserving action of a Polish
normed group (G, |-||) on a standard probability space X; let D : Rg — R
be the associated metric on the orbits of the action. The L' norm of an au-
tomorphism 7' € [G ~ X] is denoted by ||T||, and is defined by the integral
IT|l, = [y D(z,Tx)dpu(z). In general, many elements of the full group will have an
infinite norm, and the L! full group of the action consists of the automorphisms
for which the norm is finite: [G ~ X|1 ={T € [G ~ X : ||T||; < oo}.

Elements of [G ~ X]; form a group under the composition, as can readily be
verified using the triangle inequality for D and the fact that transformations are
measure-preserving. Likewise, it is straightforward to check that |-|| is indeed a norm
on [G ~ X ;. Our goal is to prove that the topology of the norm ||-||; on [G ~ Xy
is a Polish topology. Mimicking the approach taken in [CLM16], we provide a
different definition of the L' full group, where Polishness of the topology will be
readily obtainable, and then argue that the two constructions are isometrically
isomorphic.

REMARK 2.6. The notion of L! full groups, discussed here, encompasses full
groups from [CLM16], since the latter corresponds to the case when G is equipped
with a compatible bounded norm.

We recall some basic facts from |[CLM16]. L°(X,G) denotes the space of
measurable functions f : X — G; this space is Polish with respect to the topology
of convergence in measure. One can endow the X with a Polish topology such that
the evaluation map @ : L°(X, G) — LO(X, X), given by ®(f)(z) = f(x) - x, becomes
continuous.

REMARK 2.7. In [CLM16|, the possibility of making ® continuous is obtained
by appealing to the remarkable but difficult result of H. Becker and A. S. Kechris,
which states that every Borel G-action has a continuous model [BK96, Thm. 5.2.1].
Let us point out that one can also derive this from the easier fact that every Borel
G-action can be Borel embedded into a continuous G-action on a Polish compact
space (see, for instance, [BK96, Thm. 2.6.6]), as we can endow the latter with the
push-forward measure and work with it instead.

Let the set PF C L°(X, G) be the preimage of Aut(X, ;1) under ®:
PF = {f € L%X,G) : ®(f) € Aut(X, p)}.

Since Aut(X, i) is a G subset of L(X, X) (see [CLM16} Prop. 2.9] and the remark
after it), PF is G5 in L°(X, G), hence Polish in the induced topology. The group
operations can be pulled from Aut(X, u) onto PF (cf. |[CLM16, p. 91]) as follows:
for f,g € PF and = € X define the multiplication via (f * g)(z) = f(®(g)(x))g(x)
and the inversdﬂ by inv(f)(x) = f(®(f)~!(z))~!. These operations turn PF into a
Polish group and ® : PF — Aut(X, i) into a continuous homomorphism.

The space L' (X, G) admits a natural inclusion ¢ : L' (X, G) — L°(X, G), which
is continuous, as can be seen by noting that the equivalent metric dj; = min{1,dg}

1The symbol f~1 has already been used in the definition of the pointwise inverse on all of
L1 (X, G). We introduce a different operation here, hence the slightly unusual choice of the symbol
to denote the inverse operation.
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on G generates the convergence in measure topology on LY(X,G) (see [CLM16),
Prop. 2.7)), and dg(f,g) > di(f,g) for all f,g € LY(X,G). Set PF' = ,~!(PF),
which we endow with the topology induced form L(X,G). Since L}(X,G) is a
subset of L°(X, G), we may omit the inclusion map ¢ when convenient.
PROPOSITION 2.8. PF! is a Polish group with the multiplication (f,9)— (fxg)
and the inverse f +— inv(f). The function f — ||f||L X9 s a compatible group
norm on PF! and ® ot [ppi: PF! — Aut(X, 1) is a continuous homomorphism.

PRrROOF. First of all, we need to show that these operations are well-defined in
the sense that functions f * g and inv(f) belong to L*(X, G) whenever so do their
arguments. To this end observe that for f,g € PF!

I£alt 9 = [ 1@ @) @e@) duta)

< [ @@ @l dute)+ [ Lol dute

Now note that since ®(g) is measure-preserving, we have

J @@ dute) = [ 5@ dute)
and therefore

1919 < [ U@ dut@)+ [ Tl dua) = 171 + gl .

In particular, f * g € L'(X,G), and thus PF! is closed under the multiplication.
Similarly, ®(f) € Aut(X, u) implies

line()1F 5 = [ (@) @) duto)
= [ W@ dute) = 1A .
X

Thus PF? is also closed under taking inverses. Since these operations define a group
structure on PF, it follows that PF! is an (abstract) subgroup of PF. Note that we

have also established that ||-HL1(X’G) is a group norm on PF!. The multiplication
and the operation of taking the inverse are continuous in the topology of L*(X, G),
which is a consequence of the continuity of ® o ¢ coupled with Propositions
and Since PF! is a G subset of LY(X,G), we conclude that it is a Polish group

1
in the topology induced by the norm ||||If (X6 O

Let K < PF! denote the kernel of ® ot [pp1, and let || HPF /% denote the
quotient norm induced by ||- H1 (X.6) (see Proposition regarding the properties

of the quotient norm). The factor group (PF'/K, ||- HPF / %Y is evidently a Polish
normed group, and it turns out to be isometrically isomorphic to the L' full group
introduced in Deﬁnition as we will now see. Let ® : PF! /K — Aut(X, 1) denote
the homomorphism induced by ® o ¢ [pp1 onto the factor group.

PROPOSITION 2.9. The homomorphism ® : PF' /K — Aut(X, ) establishes an
isometric isomorphism between (PF'/K, ||||113F /K) and ([G ~ X1, ]/l;)-
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PROOF. We begin by showing that ||gK | "% = |®(¢K)||; holds for any

gK € PF'/K. By the definition of the quotient norm,

PF'/K .
KT/ = it [ la(@k@)] duto)
For any fixed k € K, we have g(z)k(z) - x = g(x) - , and therefore
D(z,g(z) - x) < |lg(x)k(x)|| for almost every z € X.
This readily implies the inequality ||®(gK)|, < ||gKH§)F1/K
let € > 0 and consider the set

{(z,u) e X xG:g(x) -z =u-z and |ju| < D(z,g(z) - xz) + €}.

. For the other direction,

Using Jankov-von Neumann uniformization theorem, one may pick a measurable
map go : X — G that satisfies go(x) -z = g(x) - z and ||go(2)|| < D(z,g(x) - z) + €
for almost all z € X. Since z +— g(x) 1go(z) € K, we have

18 (gK) | = /X D(x, 9(x) - z) du(x)

> /X l9(2)9(x) L0 ()| du(z) — e
> gk |7~

1 ~
As € is an arbitrary positive real, we conclude that HgKHll)F - 1P(gK)||1-

It remains to check that ® is surjective. For an automorphism T € [G~ X1,
consider the set

{(z,u) e X xG:Tx =u- -z and |u|| < D(z,Tz) + 1}.

Applying the Jankov-von Neumann uniformization theorem once again we get a map
g € LO%(X,G) such that ®(g) =T and ||g(x)|| < D(x,Tx) + 1. The latter inequality
together with the assumption that T € [G ~ X]; easily imply that g € L1 (X, G)
and thus gK € PF!'/K is the preimage of T under ®. |

Results discussed thus far can be summarized as follows.

THEOREM 2.10. Let G ~ X be a Borel measure-preserving action of a Polish
normed group (G, |-||) on a standard probability space. The L' full group |G ~ X|;
is a Polish normed group relative to the norm |T||, = [ D(z,Tx) du(z).

REMARK 2.11. When the acting group is finitely generated and equipped with
the word length metric with respect to the finite generating set, it can be shown
that the left-invariant metric induced by the norm on the L full group is complete
(see [LM18, Prop. 3.4 and 3.5] and the remark thereafter for a more general
statement). Nevertheless, generally L! full groups do not admit compatible complete
left-invariant metrics, i.e., they are not necessarily CLI groups. For instance, if
G = R is acting by rotation on the circle, the L' full group of the action is all of
Aut(S', \), which is not CLI.

Let us point out a possibility to generalize our framework. Given a standard
probability space (X, u), consider an extended Borel metric D on X i.e., a Borel
metric that is allowed to take the value +oo (Eq. provides such an example).
Note that the relation D(x,y) < 400 is an equivalence relation. One can now define
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the L full group of D in complete analogy with Definition as the group of all
T € Aut(X, i) whose norm ||T'||, = [ D(z,T(z)) dp(x) is finite.

QUESTION 2.12. Suppose that D restricts to a complete separable metric on
each equivalence class {y € X : D(z,y) < +oo}, © € X. Is the L* full group of D
Polish in the topology of the norm ||-|| ¢

2.3. L! full groups and quasi-metric structures

When viewed as a normed group, the L! full group [G ~ X]; depends on
the choice of a compatible norm on G. The topological structure on [G ~ X];,
however, depends only on the quasi-metric structure of the acting group. Recall
that two norms ||-|| and ||| on a Polish group G are quasi-isometric if there exists
a constant C' > 0 such that for all g € G,

1
clal=C <lgl" < Clgll +C.

LEMMA 2.13. Let ||-|| and ||| be two quasi-isometric compatible norms on a
Polish group G, and let G ~ (X, ) be a Borel measure-preserving action on a
standard probability space. The L' full groups associated with the two norms are
equal as topological groups.

PRrROOF. The quasi-isometry condition implies that a function f : X — G
satisfies [y || f ()|l du(z) < +oc if and only if [, || f(z)|’ du(z) < +oc. In particular,
the L' full groups associated with these norms are equal as abstract groups.

Both topologies make the inclusion of [G ~ X]; into Aut(X,u) continuous
by Proposition [2.8] and, in particular, the inclusion map is Borel. Since injective
images of Borel sets by Borel maps are Borel (see, for example, |[Kec95, Thm. 15.1]),
it follows that both topologies induce the same Borel structure on [G ~ X]i,
which also coincides with the one induced by the weak topology on Aut(X, p). A
standard automatic continuity result (originally due to S. Banach [Ban32, Thm. 4
p. 23]) then yields equality of the two topologies (see also the second paragraph
following [BK96, Lem. 1.2.6]). O

When a Polish group G admits a canonical choice of the quasi-metric structure,
L' full groups [G ~ X]; are unambiguously defined as topological groups without
the need to choose any particular norm on G. This is the case for boundedly
generated Polish groups—the class of groups identified and studied by C. Rosendal
in his treatise [Ros22|. Appendix provides a succinct review of the concept of
maximal norms on boundedly generated Polish groups.

An example of this situation is given by G = R, where the usual Euclidean
norm is maximal in the sense of Definition [A.5]

REMARK 2.14. We will see in the last chapter that the natural L' norm on the
L! full groups of R-actions is marimal so that it defines a quasi-metric structure
which is canonically associated with the topological group structure.

2.4. Embedding L! isometrically in L' full groups

We now show a general result on the geometry of L! full groups endowed with
the L' norm ||-||,, which says that they are quite big.
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Given a o-finite measured space (X, B, \), denote by MAlg (X, \) the space of
all finite measure subsets B € B identified up to measure zero and endowed with
the metric dy(B1, B2) = A(B1 A Bs).

PROPOSITION 2.15. Let (G, ||||) be a Polish normed group acting by measure-
preserving transformations on a standard probability space (X, ). If

(G X #[G~ X],

then the metric space (MAlg¢(R,\),dy) embeds isometrically into the L' full group
of G ~ X endowed with its L' metric, and hence so does L'(X, u,R).

PROOF. Since [G ~ X] is a full group, any of its elements can be written as
a product of three involutions belonging to [G ~ X] by [Ryz85|. By assumption,
[G ~ X]1 # |G ~ X] so there must be an involution U € [G ~ X| which
does not belong to [G ~ X];. Denote by By the o-algebra on supp U consisting
of U-invariant sets, endowed with the measure given by Ay (A) = ||Uall;. Since
suppU = U, {z € suppU : D(z,U(x)) < n}, the measure \y is o-finite. Also,
Ay is non-atomic, because so is p, and infinite, because U ¢ [G ~ X];. There
is only one o-finite standard atomless infinite measured space up to isomorphism
(namely (R, B(R),\)) so we conclude that (MAlg(supp U, A\vr),d»,,) is isometric
to (MAlg;(R, A),dy). Composing this isometry with A — Uy, we get the desired
isometric embedding (MAlg;(R, ), dy) — [G ~ X]1.

Finally, we observe that L' (X, u,R) can be embedded into MAlg (X xR, p®\)
by taking a function f to its epigraph, namely the set of all (z, y)' € X x R such
that f(x) <y <0or 0 <y < f(z). Since there is again only one infinite o-finite
standard atomless measured space and (X x R, 4 ® A) is such a space, we get an
isometric embedding L' (X, 4, R) — MAlg;(R, \) as wanted. O

REMARK 2.16. Full groups of actions of Polish groups are always coarsely
bounded. In fact, they are coarsely bounded even as discrete groupﬁﬂ which is a
result due to M. Droste, W. C. Holland and G. Ulbrich [DHUOS]| (see also [Mil04}
Section 1.8] for a more general statement which encompasses the non-ergodic case).
In particular, the above result is actually a sharp dichotomy: every L' full group of
a Polish normed group action is either coarsely bounded, or it contains an isometric
copy of LY(X, u, R).

REMARK 2.17. Since R™ endowed with the ¢! norm embeds isometrically into
LY(X, 4, R), Proposition significantly improves [LM21| Prop. 6.9].

2.5. Stability under the first return map

Some of the basic properties of L' full groups are discussed—in the wider
generality of induction friendly finitely full groups—in Chapter [3] The often-used
fundamental fact is the closure of L! full groups under taking the induced maps,
which is a generalization of [LM18| Prop. 3.6]. We formulate this in Propositionm

Let T € Aut(X, 1) be a measure-preserving transformation. Recall that for a
measurable subset A C X, the induced map T4 is supported on A and is defined to
be T"(x) for x € A where n > 1 is the smallest integer such that T"(x) € A. By the
Poincaré recurrence theorem, such a map yields a well-defined measure-preserving
transformation.

2Being coarsely bounded as a discrete group is also called the Bergman property.
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PROPOSITION 2.18. Let G ~ X be a Borel measure-preserving action of a
Polish normed group (G, ||-||). For any element T € [G ~ X]1 and any measurable
set A C X, the induced transformation Ty belongs to [G ~ X]i and moreover
I Tally < 1715 -

PrROOF. For n > 1, let A,, be the set of elements of A whose return time is
equal to n; note that X = |, -, ;= ' Ti(Ay). Let as before D : R — R0 be the

metric induced by the group norm ||-|| on the orbits of the action. To estimate the
value of ||T4]|;, observe that

Tl = [ Dl Tas) duta z/p o Taz) dp(s)

:T;/AWD(JC’T%C) du(x).

Using the triangle inequality, we get
oo n—1
Tl < 3 [ De 7 ) dute)
n=1 i=0
oo n—1
= Z Z D(z,Tx)d(uoT™*)(x)
n=1i=0 7 T*(An)

oo n—1

* T preserves p = ZZ D(z,Tx)du(x / D(z,Tx)du(z) = ||T|, .
n=1i=0 7 T"(An)

Thus T4 € [G ~ X |y and ||Tal|; < ||T|; as claimed. O







CHAPTER 3

Polish finitely full groups

The main object of our investigation in this work are L! full groups of Borel
measure-preserving actions of Polish normed groups. Some results, however, are
valid in the more general context of what we call Polish finitely full groups. It
encompasses L' full groups and allows us to put some of the proofs on topological
simplicity and on maximal norms from [LM18|[LM21] in a unified and broadened
context.

Starting with a Polish finitely full group as defined in Section [3.1} we construct
in Section [3.2) a natural closed subgroup of the latter which we call the symmetric
subgroup, analogous to V. Nekrashevych’s symmetric and alternating topological
full groups [Nek19|. We show that this closed subgroup coincides with the closure
of the derived group under a mild hypothesis, satisfied by L' full groups, which
we call induction friendliness. Section [3.3]is devoted to the study of closed normal
subgroups of the symmetric subgroup: we show that they correspond to invariant
sets, a fact which easily yields topological simplicity when the ambient Polish finitely
full group is ergodic. Finally, in Section [3.4] we provide a condition normed induction
friendly Polish finitely full groups which guarantees maximality on the symmetric
subgroup in the sense of C. Rosendal (a brief reminder of the relevant notions is

given in Appendix [A.2)).
3.1. Polish full and finitely full groups

H. Dye defined a subgroup G < Aut(X,u) as being full when it is stable
under the cutting and pasting of its elements along a countable partition: given any
partition (A,), of X and any sequence (g, ), such that the family (g, (4,))n also
partitions X, the element 7" € Aut(X, u) obtained as the reunion over n € N of the
restrictions g, [a, belongs to G. In particular, the group Aut(X, p) itself is full.

Given any G < Aut(X, ), the group obtained by cutting and pasting elements
of G along countable partitions is the smallest full subgroup containing G. We
denote it by [G] and call it the full group generated by G.

Recall that the uniform topology on Aut(X, ) is the topology induced by the
uniform metric d,, defined by

du(Tl,Tg) = ,u({l' e X: Tlfﬂ 7& TQI})
The following can essentially be traced back to H. Dye [Dye59| Lem. 5.4].

PROPOSITION 3.1. The metric dy is complete on any full group G, and it is
separable if and only if the full group is generated by a countable group.

PROOF. Suppose that (T},), is a Cauchy sequence in the full group G. Taking
a subsequence, we may assume that dy (T, Th+1) < 27" for all n. By the Borel-
Cantelli lemma, for almost every x € X there is some N € N such that T,x = Ty

17
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for all n > N. Let Tx = Ty for such N = N(z), and note that T is a measure-
preserving bijectionﬂ and d, (T}, T) < 27 "1 By construction, T is obtained by
cutting and pasting the elements T, of G along a countable partition so T' € G,
since G is full.

Suppose G is separable and let T be a countable dense subgroup. The group [I']
is a countably generated full group which is dense in G, so G = [I'] by completeness.
The converse is obtained by noting that if I' generates G, then one can view G as
the full group of the equivalence relation generated by a realization of the action of
I on (X, p1), which is d,-separable by [Kec10, Prop. 3.2]. O

The L! full groups that we are considering are not full in the sense of H. Dye
unless the norm on the acting Polish group is bounded, a case which was considered
earlier in [CLM16|. They nevertheless satisfy the following weaker property.

DEFINITION 3.2. A group G < Aut(X, 1) of measure-preserving transformations
is finitely full if for any partition X = A; U---U A,, and g1, ..., 9, € G such that
the sets g1 A1, ..., gn Ay, also partition X, the element T' € Aut(X, 1) obtained as
the reunion over ¢ € {1,...,n} of the restrictions g; [ 4, belongs to G.

We have the following useful relationship between fullness and finite fullness.

PRrROPOSITION 3.3. The d,,-closure of any finitely full group G is equal to the full
group [G] generated by G. Moreover, every element T € [G] is a limit of elements
of G whose support is contained in the support of T'.

PROOF. Since full groups are d,-closed and using the definition of fullness, it
suffices to show that every element T' € [G] is a limit of elements of G that belong
to the full group generated by 7.

Since every T € [G] is a product of three involutions in [T]E| |Ryz85], it suffices
to show that every involution in [G] is a limit of elements of G whose support is
contained in the support of that involution. Let U be such an involution, let (A4,),
be a partition of X, and let (g,)n in G be such that Uz = g,z for all z € A,,.
Pick a fundamental domain B for U, i.e., BNU(B) = @ and suppU = BUU(B).
If B, = A, N B, then Uz = g,z for all x € B,,, and, since U is an involution,
Uz = g, ' for all z € U(B,,). Let

{ Uz ifzel,,<, (BnUU(B)),
U,x = T M=
T otherwise.

Clearly U, € G, since G is finitely full. Furthermore, U,, — U uniformly and
supp U,, C supp U by construction, which finishes the proof. [l

Consider a finitely full group G which is a Borel subset of Aut(X,u) and
therefore inherits the structure of a standard Borel space. If G is Polishable, i.e.,
if it admits a Polish group topology compatible with the Borel structure, then
such topology is necessarily unique and must refine the weak topology inherited
from Aut(X, ) (standard automatic continuity results can be found, for instance,
in [BK96/| Sec. 1.6]). We refer to such Polishable groups G endowed with their
unique Polish group topology refining the weak topology as Polish finitely full

IThis also follows from the fact due to P. Halmos [Hall7| that Aut(X, p) is dy-complete.

2In fact, we only need the much easier fact that every element is a limit of products of
two involutions from its full group, which follows by combining Theorem 3.3 and Sublemma 4.3
from |Kec10|.
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groups. In this monograph, our motivating example for introducing this class is of
course L! full groups.

For any subgroup G < Aut(X, ), there is the smallest finitely full group
containing G. Note that if H < Aut(X, p) is a finite group, then the finitely full
group it generates coincides with the full group it generates. This, in particular,
applies to the group generated by a periodic transformation with bounded periods.

PROPOSITION 3.4. Suppose G is a Polish finitely full group, and U € G is a
periodic transformation with bounded periods. The topology induced by G on the
full group of U is equal to the uniform topology.

PROOF. The weak and the uniform topologies on [U] coincide since U is periodic.
We already mentioned that the topology of G refines the weak topology. Since [U]
is Polish in the uniform topology, by the automatic continuity [BK96, Thm. 1.2.6],
the topology induced by G on the full group of U is refined by the uniform topology.
Hence the uniform topology and the topology induced from G onto [U] must
coincide. (]

We conclude this preliminary discussion with a definition of aperiodicity which
applies to arbitrary subgroups of Aut(X, u). Such a notion was already worked out
by H. Dye [Dye59, Sec. 2] when he introduced type II subgroups. An equivalent
version which suffices for our purposes is as follows.

DEFINITION 3.5. A subgroup G < Aut(X,p) is aperiodic it it admits a
countable weakly dense subgroup whose action on (X, 1) has no finite orbits.

It can be checked that for an aperiodic G < Aut(X, i), every countable weakly
dense subgroup has infinite orbits almost surely. Further discussion of aperiodicity
can be found in Appendix [D-4]

3.2. Derived subgroup and symmetric subgroup

Our goal in this section is to identify when the closed derived subgroup of
a Polish finitely full group is topologically generated by involutions. We start
by noting that aperiodic finitely full groups admit many involutions in the sense
of |[Fre04, p. 384]:

LEMMA 3.6. Let G be a finitely full aperiodic group. For every measurable

nontrivial A C X, there is a nontrivial involution g € G whose support is contained
m A.

PROOF. By Lemma[D.13] there is an involution T € [G] whose support is equal
to A. By the moreover part of Proposition[3.3] T is the d,-limit of g,, € G supported
in A. In particular, one of the g,’s is nontrivial and g = g,, satisfies the statement
of the lemma. (]

The first and the second items of the following definition constitute analogues
of V. Nekrashevych’s symmetric and alternating topological full groups [Nek19],
respectively. In the setup of L' full groups, however, these notions coincide, as we
will see shortly.

DEFINITION 3.7. Given a Polish finitely full group G, we let

e &(G) be the closed subgroup of G generated by involutions, which we call
the symmetric subgroup of G.
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e 2A(G) be the closed subgroup of G generated by 3-cycles, i.e., generated by
periodic transformations whose non-trivial orbits have size 3.

e D(G) be the closed subgroup generated by commutators (also known as
the topological derived subgroup).

All these groups are closed normal subgroups of G, and 2(G) < &(G) N D(G)
because every 3-cycle is a commutator of two involutions from its full group.

PROPOSITION 3.8. A(G) = &(G) for any aperiodic finitely full group G.

PRrROOF. We need to show that every involution is a limit of products of 3-
cycles. Let U € G be an involution, and let D denote its fundamental domain; thus
suppU = DU U(D). By Lemma one can find an involution V' € [G] whose
support is equal to D. Since G is finitely full, we may write D as an increasing
union D = J,, Dr, Dy, € Dy 41, where each D, is V-invariant, and for every n € N
the transformation V,, induced by V on D,, belongs to the group G itself. Let U,
denote the restriction of U onto D,, UU(D,,) and note that U,, — U in the uniform
topology, and hence also in the topology of G by Proposition Our plan is to
use the following permutation identity

(3.1) (12)(34) = (12)(23)(24)(23) = (123)(423),

where U, corresponds to (12)(34), V,, to (13), and U, V,,U,, corresponds to (24). To
this end, let C), be a fundamental domain for V,,, put W,, = U [¢,Lu(c,) (Which
corresponds to the involution (12)), and, at last, set S,, = W,,V,,W,, (corresponding
to (23) = (12)(13)(12)). Figure illustrates the relations between these sets and
transformations.

Wn‘ Sn

C, Va(Cr)

O [ w] ®
D,

FIGURE 3.1. Involution U, is a products of 3-cycles via (12)(34) =
(123)(234).

Equation (3.1) translates into U,, = (WnSn) ((UnVnUn)Sn), so U, is a product
of two 3-cycles, hence it belongs to 2(G). Since by construction U, — U, we
conclude that U € A(G). O
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We do not know whether 2(G) = D(G) holds for all finitely full groups, but
here is a convenient sufficient condition.

DEFINITION 3.9. A Polish finitely full group G is called induction friendly if
it is stable under taking induced transformations and, furthermore, whenever T' € G
and (A,), is an increasing sequence of T-invariant sets such that |J,y A, = A, then
TA" — Ty.

In the above definition, we require stability under taking the induced transfor-
mations and so T4, always belongs to G. However, for T-invariant A,,, T4, € G is
already a consequence of G being finitely full.

Observe that L! full groups of measure-preserving actions of Polish normed
groups are finitely full and also induction friendly. Indeed, finite fullness follows from
a straightforward computation, while induction friendliness is a direct consequence
of Proposition and Lebesgue dominated convergence theorem.

LEMMA 3.10. In an induction friendly Polish finitely full group G, every periodic
element belongs to S(G).

PROOF. Suppose T is periodic. For n € N, let A,, be the set of z € X whose T-
orbit has cardinality at most n. Each A, is T-invariant and (J,, A, = X. Moreover,
T4, is periodic, so it can be written as a product of two involutions from its full
group, and since G is finitely full and the periods of T4, are bounded, these two
involutions belong to G. The conclusion follows from induction friendliness and
convergence T4, — T'. ]

LEMMA 3.11. Let G be an induction friendly Polish finitely full group, T € G
and F C X be the aperiodic part of T, i.e.,

F={ze X :TFz #x for all k # 0}.
For any A C X such that F C J,c, TH(A) one has TAS(G) = TS(G).

PROOF. Since F C ez T%(A), the transformation T7'T, is periodic and
therefore belongs to G(G) by Lemma Hence

TS(G) = TT 'T46&(G) = T4&(G). O

REMARK 3.12. Usefulness of the above lemma stems from the following simple
observation. If T, 7", U, U’ satisfy T6(G) = T'S(G) and US(G) = U'S(G), then
[T,U] € 6(G) if and only if [T7,U’] € &(G). In particular, for A as in Lemma
[T,U] € 6(G) whenever [T4,U] € &(G). This fact is used in the proof of the next
lemma.

LEMMA 3.13. Suppose G is an induction friendly Polish finitely full group.
If T,U € G are aperiodic on their supports, then [T,U] € &(G).

PrOOF. Let C be a cross-section for the restriction of Ry onto supp7'. In other
words, C' C X is a measurable set satisfying (J;,, TY(C) = suppT. The induced
transformation Ux\c commutes with T, since their supports are disjoint. We
would be done if supp U C [, U/(X \ C). Indeed, in this case TS(G) = TcS(G),
US(G) = Ux\c6(G) by Lemmaand [Tc, Ux\c] is trivial, hence [T, U] € &(G).

Motivated by this observation, we argue as follows. Pick a vanishing nested
sequence (Cy,)nen of cross-sections for R [supp 7, i-6.; Cn 2 Cri1, Upez T+(C,) =
supp T for all n € N, and [),,cy Cn = @ (see also Lemma . Such a sequence
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of cross-sections exists since T is assumed to be aperiodic on its support. Define
inductively sets BJ,, n € N, by setting Bj = X \ Cy, and letting B/, be the part of
X \ C, that does not belong to the U-saturation of any B}, k < n,

B, = (x\ e\ | UUiBh):
k<ni€Z
By construction, saturations under U of the sets B!, are pairwise disjoint, and the
saturation of their union is the whole space, ;e U (U, en Bh) = X, because sets
C,, vanish.

Let By, = | |, Biy B = ey Biy and note that U, ,Up € G, and Up, — Up
by the induction friendliness of G. By construction, transformations T¢, and
Up, have disjoint supports for each n and, therefore, commute. Since all sets C,,
are cross-sections for Ry [supp7, one has [T,Up, ] € &(G) by Lemma and
Remark Taking the limit as n — oo, this yields [T, Ug] € 6(G). Finally, the
U-saturation of B is all of X, we use Lemma and Remark once again to
conclude that [T, U] € &(G), as claimed. O

ProrosiTION 3.14. If G is an aperiodic induction friendly Polish finitely full
group, then &(G) = D(G).

PrROOF. Inclusion 2A(G) < D(G) holds for any Polish finitely full group and
Proposition gives 6(G) < D(G). We therefore concentrate on proving the
reverse inclusion: given T,U € G, we need to check that [T,U] € &(G). Let Fr
and Fy be the aperiodic parts of T' and U respectively, so that TS(G) = Tk, S(G),
US(G) = Up,&(G) by Lemma [3.11} By construction, T, and Up, are aperiodic
on their supports and therefore [Tr,., Ur,] € 6(G) by Lemma It remains to
use Remark to conclude that necessarily [T, U] € &(G), as needed. O

COROLLARY 3.15. Let G be a Polish normed group, and let G ~ X be an

aperiodic Borel measure-preserving action on a standard probability space (X, ).
The three subgroups of |G ~ X1 introduced in Deﬁnition coincide:

D(G ~ XT1) =0([G ~ X]1) =6([G ~ XT1).

Moreover, they are all equal to the closure of the group generated by periodic elements

of |G~ X];.

PROOF. The equality D([G ~ X]1) = A([G ~ X]1) = &([G ~ X]1) follows
immediately from Propositions and since [G ~ Xy is both finitely full and
induction friendly. All these groups are equal to the closure of the group generated
by periodic elements of [G ~ X]; in view of Lemma and the fact that this
group obviously contains &([G ~ X ]1). O

3.3. Topological simplicity of the symmetric group

We now move on to showing that symmetric subgroups of ergodic Polish finitely
full groups are always topologically simple. Our argument abstracts from [LIM18|
Sec. 3.4]. In particular, we rely on conditional measures associated with subgroups
of Aut(X, u), whose construction and basic properties are recalled in Appendix @

LEMMA 3.16. Let G be an aperiodic Polish finitely full group, let U,V € G be
two involutions whose supports are disjoint and have the same G-conditional measure.
Then U and V' are approzimately conjugate in S(G), i.e., there are T, € &(G)
such that T,UT,;1 — V.
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PROOF. Let A (resp. B) be a fundamental domain of the restriction of U (resp.
V) to its support. Then ug(A) = ug(B) and there is an involution T € [G] such
that T(A) = B.

Since G is finitely full, there is an increasing sequence (A,,),, of subsets of A such
that the involutions 7}, induced by T on A, UU(A,,) belong to G, and |J,, 4, = A.
Let B, = T(A,) =T, (A,) and define involutions 7,, € G which almost conjugate
U to V as follows. For z € X, let

Tx ifexe A, UB,
VIUz ifxeU(A)
UTVz ifzeV(B,)

x otherwise.

T,r =

For all n € N and all x € X, an easy calculation yields that:

o ifzre (AUU(A))\ (A UU(Ay)), then T, UT,x = Ux;

e if z € B, UV(B,), then T,,UT,z = Vu;

e and T,,UT,,x = z in all other cases.
In particular, d,,(T,,UT,, V) — 0 and Proposition applied to the full group of the
involution UV (which contains both U and V'), guarantees that T,,UT,, - V. O

LEMMA 3.17. Let G be an aperiodic Polish finitely full group, let U € G be an
involution, and let A be a U-invariant subset contained in suppU. Suppose that
there exists an involution V € G such that V(A) is disjoint from suppU. Then
for all G-invariant functions f < 2ug(A), there is an involution W € G such
that UWUW s an involution whose support has G-conditional measure f.

PROOF. Let B C A be a fundamental domain for the restriction of U to A
and note that pug(B) = pug(A)/2. By Maharam’s lemma (Theorem [D.12), there is
C C B such that pug(C) = f/4 . The set D = C UU(C) is U-invariant and satisfies
ue(D) = f/2. Consider the involution W € G defined by

Wa — Va 1fx€DI_IV(D)
x  otherwise.

A straightforward computation shows that UWUW is an involution which coincides
with U on D, with VUV on V(D), and is trivial elsewhere. Hence the support of
UWUW is equal to D LIV (D), and has G-conditional measure f. O

PROPOSITION 3.18. Let G be an aperiodic Polish finitely full group, let T € G,
and let A denote the G-saturation of suppT. The closed subgroup of G generated
by the &(G)-conjugates of T contains &(G) 4.

PROOF. Let the closed subgroup of G generated by the &(G)-conjugates of T be
denoted by G. We can find B C supp 1" whose T-translates cover supp 7’ and which
satisfies BNT(B) = @. Since T-translates of B cover supp T', we conclude that the
G-translates of B cover A, and so ug(B)(x) > 0 for all z € A. By Maharam’s lemma
(Theorem , we can find C' C B whose G-conditional measure is everywhere
less than 1/4, and is strictly positive on A. Let D = C UT(C) and take V € [G] to
be an involution such that V/(C' U T(C)) is disjoint from C UT(C).

Let W € [G] be an involution such that supp W = C'. Using the facts that G is
finitely full, that T € G and that V, W € [G], one can find an increasing sequence
(Cp)n of W-invariant subsets of C' such that | J,, C, = C and for each n € N both
We, € G and Vg, ur(c,)uv(c,.ur(c,)) € G. Transformations We, TWe, T~ belong
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to G, and are, in fact, involutions whose support is equal to C,, UT(C,) and has
conditional measure at most 2ug(C) < 1/2. Let us define for brevity

Un = VVCRTVV(;"T*1 € G and ‘77, = VCnuT(CH)uV(CnuT(Cn)) eG.

For every n € N, let A,, denote the G-saturation of C),. Note that A =J,, A,
and the union is increasing. Every involution supported on A is thus the uniform
limit of the involutions it induces on A,’s. By Proposition [3.4] it therefore suffices
to show that G contains all the involutions which are supported on some A,,.

Let U be an involution U supported on some A,,. Let D be a fundamental
domain for the restriction of U to its support. Using Maharam’s lemma repeatedly,
we can partition D into a countable family (D) such that

(3.2) e (Dr) < pg(suppU,)/2  for all k € N.

If we let Ey, = D UU(Dy), the sequence (Fy)y forms a partition of supp U into
U-invariant sets. In particular, U = limy, Hf:o Ug, in the uniform topology and
therefore in the topology of G as well by Proposition Moreover, the support
of Ug, has G-conditional measure at most pug(suppU,) by Eq. (3.2). The set
174 (supp ﬁn) is disjoint from supp U,, by construction. Lemma [3.17] applies and
provides an involution in G whose support has the same conditional measure as that
of Ug,. Lemma shows that each Ug, belongs to G and therefore also U € G,
as needed. O

THEOREM 3.19. Let G < Aut(X,
For any closed normal subgroup N <

such that N = &(G)4.

w) be an aperiodic Polish finitely full group.
&(G) there is a unique G-invariant set A

PROOF. First, observe that for G-invariant A; and As, any involution U € G
supported in A; U Ay decomposes into the product of one involution supported
in A, and one supported in A,. It follows that the closed group generated by
S(8)a, US(B) 4, is equal to &(B) a,04,. Also, by Proposition [3.4] whenever (4,,),
is an increasing sequence of G-invariant sets, one has

U &(G)a, =6(G)y a,-
The set {A € MAlg(X, ) : A is G-invariant and &(G)4 < N} is thus directed and
is closed under the countable unions. It therefore admits a unique maximum element,
which is the set A we seek. Indeed, G(G)4 < N, and the reverse inclusion is a direct
consequence of Proposition [3.18

It remains to argue that the set A satisfying N = &(G) 4 is unique. Suppose
towards a contradiction that &(G)a, = &(G),for A; # Ay. By symmetry, we
may assume that z1(A4; \ A2) > 0. Lemma[3.6] provides an involution V € G whose
support is nontrivial and is contained in Ay \ Ag, thus V € &(G) 4, but V ¢ &(G)a,,
contradicting &(G) 4, = 6(G) 4,. O

COROLLARY 3.20. Let G < Aut(X, ) be an aperiodic Polish finitely full group.
The group &(G) is topologically simple if and only if G is ergodic.

ProOOF. If G is ergodic, then &(G) is topologically simple by Theorem
Conversely, suppose that G is not ergodic and let A C X be a G-invariant set with
w(A) € {0,1}. Then &(G) 4 is a normal subgroup of G which is neither trivial nor
equal to &(G) as a consequence of Lemma applied to A and its complement. [
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Specifying the corollary above to L! full groups and using Corollary we
obtain the following result.

COROLLARY 3.21. Let G be a Polish normed group, and let G ~ X be an
aperiodic Borel measure-preserving action on a standard probability space (X, ).
The topological derived subgroup of the L' full group of the action is topologically
simple if and only if the action is ergodic.

3.4. Maximal norms on the derived subgroup

The purpose of this section is to establish sufficient conditions for a norm
on the derived subgroup of an induction friendly Polish finitely full group to be
maximal in the sense of Section Our argument follows closely the one given
in [LM21}, Sec. 6.2] for amenable graphings. The main application of Proposition
will be given in Theorem but we hope that the setup of this section can be
useful in other contexts, such as g-integrable full groups [CIJMT22].

DEFINITION 3.22. A norm ||-|| on a subgroup G < Aut(X, u) is additive if
TS| = IT]| + ||S]|| for all T, S € G with disjoint supports.

The following lemma parallels [LM21] Lem. 6.4] and is the key to showing that
the norm on the derived subgroup is both coarsely proper and large-scale geodesic.

LEMMA 3.23. Let G < Aut(X,u) be a finitely full Polish group, and suppose
that ||-|| is a compatible additive norm on G. For any periodic U € G with bounded
periods and for every n € N, there are periodic elements Uy, ...,U, € G such that

U=U,---U, and |U;| = @ for every 1 <i < n.

PrROOF. Let M = ||U| and A C X be a fundamental domain for U. We may
identify A with the interval [0, u(A)] endowed with the Lebesgue measure. Put
Ay =10,t]N A, 0<t < pu(A), and let By = J,,c;, U™ (A¢) be the U-saturation of A;.
Note that Up, € G for all ¢t € [0, u(A)] since By is U-invariant and G is finitely full,
and that ¢ — B; is continuous.

The map [0, 1(A)] ¢t — Up, € [U] C G is thus continuous with respect to the
uniform topology on [U], and therefore also with respect to the topology of G by
Proposition [3.4. Whence the function ¢ : [0, u(A4)] = R given by ¢(t) = |Ug, || is
also continuous.

We have 9(0) = 0 and ¢(u(A)) = M, so the intermediate value theorem yields
existence of reals 0 = tg < t; < -+ < tp_1 < t, = p(A) such that ¢ (t;) = % for
all i € {0,...,n}. Set C; = By, \ By,_, for i € {1,...,n}. By construction, each Cj is
U-invariant and X = | |, C;. Putting U; = Uy,, we get U = [["_, U;. Finally for
each i € {1,...,n} the equality C; = By, \ By,_, and additivity of the norm gives

¢(t:) = U, | = 1U:Us,,_, | = Uil + IUs,,_, | = Uil + 9 (ti-1),
hence ||U;]| = @ for all 7 < n, as needed. O

PROPOSITION 3.24. Let G < Aut(X, p) be an induction friendly Polish finitely
full group and let ||-|| be a compatible additive norm on it. If the set of periodic
elements is dense in D(G), then ||-|| is a mazimal norm on D(G).
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PROOF. In view of Proposition it suffices to show that ||-|| is both large-
scale geodesic (see Definition and coarsely proper (see Definition . Note
that induction friendliness yields density in D(G) of periodic automorphisms with
bounded periods.

To see that ||-|| is large-scale geodesic (with constant K = 2), let us take a
non-trivial ' € D(G) and pick a periodic U € D(G) with bounded periods such
that ||7U || < min{2,||T /2}. Note that

(3.3) 1Ol =110~ = ITT' T < T~ Y + |TUY < 3||T/2
Fix n € N large enough to ensure % < 2. By Lemma , we may decompose

U into a product of n elements Uy, ..., U, each of norm at most % < 2. Therefore
T=(TU ") Uy U,
where TU ! and each of U;, 1 < i < n, has norm at most 2 and, in view of Eq. (3.3,

n
ITU )+ YUl < @ + U1 < 20|71,
i=1
thus concluding the proof that ||-|| is large-scale geodesic.
We now show that ||-|| is coarsely proper. Fix ¢ > 0 and R > 0. Let n € N
be so large that ne > R + ¢. Then every element T € D(G) of norm at most R
is a product of n + 1 elements of norm at most €, namely one element TU ! of
norm at most €, where U is periodic with bounded periods as provided by density,
and U = U; - - - U,, where each U; has norm at most % < € as per Lemma

Thus ||-]| is both coarsely proper and large-scale geodesic, and hence is maximal by
Proposition O

REMARK 3.25. We do not have an example of an induction friendly Polish
finitely full group G such that the periodic elements are not dense in D(G). We
suspect that such groups do exist, for instance when G is the L' full group of a free
action of the free group on 2 generators.



CHAPTER 4

Full groups of locally compact group actions

In this chapter, we narrow down the generality of the narrative and focus on
actions of locally compact Polish groups, or equivalently, of locally compact second-
countable groups. Such restrictions enlarge our toolbox in a number of ways. For
instance, all locally compact Polish group actions admit cross-sections to which the
so-called Voronoi tessellations can be associated. We use this to show in Section E1]
a natural density result for subsets of L! full groups defined from dense subsets
of the acting group (Theorem and Corollary . For reader’s convenience,
Appendix [C:2] contains a concise reminder of the needed facts about tessellations.

Another key property of fre(ﬂ actions of locally compact groups is the existence
of a Haar measure on each individual orbit. As we discuss in Section elements
of the full group act by non-singular transformations and, in particular, admit the
Hopf decomposition (see Appendix . Section explains how these orbitwise
decompositions can be understood globally, yielding a natural generalization of the
periodic/aperiodic partition for elements of the full group of a measure-preserving
action of a discrete group. The periodic part in the later case corresponds to the
conservative piece of the Hopf decomposition, which generally exhibits a much more
complicated dynamical behavior. We will get back to this in Chapters [7] and

In the final Section we connect L' full groups to the notion of L' orbit
equivalence for actions of locally compact compactly generated Polish groups.

4.1. Dense subgroups in L' full groups

Our goal in this section is to prove that any element of the full group [G ~ X]
can be approximated arbitrarily well by an automorphism that piecewise acts by
elements of a given dense subset of G.

DEFINITION 4.1. A measure-preserving transformation 7" : A — B between two
measurable sets A, B C X is said to be H-decomposable, where H C Aut(X, p),
if there exist a measurable partition A = UkeN A and elements hy € H such that
T [a,= hi forall k e N.

The property of being H-decomposable is similar to being an element of the
full group generated by H except that we do not require the transformation to be
defined on all of X.

THEOREM 4.2. Let G ~ X be a measure-preserving action of a locally compact
Polish group, let ||-|| be a compatible norm on G with the associated metric on the

IMotivated by our focus on R-flows, this monograph primarily concentrates on free actions. We
note, however, that each orbit of a Borel action of a locally compact Polish group is a homogeneous
space, since point stabilizers are necessarily closed. In particular, orbits can be endowed with the
Haar measure even without the freeness assumption.

27
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orbits D : Rg — R2%, and let H C G be a dense set. For any T € [G ~ X]|
and any € > 0 there exists an H-decomposable transformation S € [G ~ X] such
that esssup,cx D(Tz, Sx) < e.

Theorem establishes density of H-decomposable transformations in the
very strong uniform topology given by esssup. In particular, it pertains to the L!
topology.

COROLLARY 4.3. Let G ~ X be a measure-preserving action of a locally compact
Polish group, let ||-|| be a compatible norm on G, and let H C G be a dense subgroup.
The L full group [H ~ Xy is dense in [G ~ X];.

REMARK 4.4. Theorem [4.2]is an improvement upon the conclusion of [CLM18|
Thm. 2.1], which shows that [H ~ X] is dense in [G ~ X ] whenever H is a dense
subgroup of G. While the proof, which we present below, establishes density in a
much stronger topology through more elementary means, we note that, as already
mentioned in [CLM18|, Thm. 2.3], their methods apply to all suitable (in the sense
of [Bec13]; see also Definition actions of Polish groups, whereas our approach
here crucially uses local compactness of the acting group to guarantee existence of
various cross-sections.

Let C be a cross-section for a measure-preserving action G ~ X and let W
be a tessellation over C (in the sense of Appendix . Let also 14y be the push-
forward measure (myy).p on the cross-section and (p.)cec be the disintegration of
w over (my,vw) (see Appendix and Theorem specifically). Without loss
of generality, we assume, whenever convenient, that the set H in the statement of
Theorem [£2] is countable.

DEFINITION 4.5. Two Borel sets A, B C X are said to be

e W-proportionate if the equivalence p.(A) =0 <= p.(B) = 0 holds
for vyy-almost all ¢ € C;
e W-equimeasurable if u.(A) = p.(B) for myy-almost all ¢ € C.

For the context of Lemmas [£.6] through we let N denote an open symmetric
neighborhood of the identity of G, and W stands for an N-lacunary tessellation.

LEMMA 4.6. If A,B C N -C are W-proportionate Borel sets then
w(B\ N?-A)=0.
PROOF. By the defining property of the disintegration,

WBAN )= [ (B AN A) (o),

and so we need to check that p.(B\ N%-A) = 0 for 1y-almost all c. Since A and B
are YW-proportionate, it suffices to show that p.(B\ N?-A) = 0 whenever j.(A) # 0.
For any ¢ € C satisfying the latter, one necessarily has ¢ € N - A (because A C N -C
and W is N-lacunary, by assumption), and thus N -¢ C N? - A. In particular,
(B\N?-A)N N -c=@. It remains to use the inclusion B C N - C, which together
with N-lacunarity of W, guarantees that

Ho(B\N? - 4) = po(B\N?- A) AN -¢) = 0. O

For the proof of the next lemma, we need the notion of a suitable action,
introduced by H. Becker |Bec13| Def. 1.2.7].
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DEFINITION 4.7. A measure-preserving Borel action G ~ X of a Polish group G
is suitable if for all Borel sets A, B C X one of the two options holds:

(1) for any open neighborhood of the identity M C G there exists g € M such
that u(gA N B) > 0;

(2) there exist Borel sets A’ C A, B’ C B such that u(A\ A') =0= u(B\ B’)
and an open neighborhood of the identity M C G such that M-A'NB' = &

All measure-preserving actions of locally compact Polish groups are known to
be suitable (see [Becl3 Thm. 1.2.9]).

LEMMA 4.8. For all non-negligible W-proportionate Borel sets A,B C N -C,
there exists an open set U C N3 such that u(gANB) >0 for all g€ U.

PRrROOF. Let H; = HNN?, which is dense in N2 = NN~!, and put 4; = H; - A.
We apply the dichotomy in the definition of a suitable action to the sets A;, B and
show that item cannot hold.

Indeed, suppose there exist A] C Ay, B’ C B satisfying

n(Ar\ A}) =0=p(B\ B),

and an open neighborhood of the identity M C G such that (M - A]) N B = @.
Set A" =, (h,'A; N A), where (hy)nen is an enumeration of Hy, and note that
w(A\A")=0and (MH,-A")N B = @, simply because Hy - A’ C A}. Since H; is
dense in N2, we have N2 C M H; and thus (N?- A') N B’ = @. Lemmal[d.6] applied
to A’ and B’, guarantees that u(B’\ N? - A’) = 0, which is possible only when
u(B') = 0, contradicting the assumption that B is non-negligible.

We are left with the alternative of the item , and so there has to exist some
g € N such that pu(gA; N B) > 0. Since A; = Hy - A, there exists h € Hy such that
u(ghA N B) > 0. It remains to note that gh € N® and that u(¢’AN B) > 0 is an
open condition on ¢’, since the homomorphism G — Aut(X, u) associated to the
measure-preserving action of G on (X, ) is continuous (see for instance [CLM18|
Lem. 1.2]). O

LEMMA 4.9. For any non-empty open V. C N and for any non-negligible Borel
set A C X, there exists h € H such that

u{x e A:he € V-C and mw(z) = mpw(hax)}) > 0.

PROOF. Let ¢ : X — W be the Borel bijection ¢(z) = (mw(z), z) and consider
the push-forward measure (,u, which for Z C W can be expressed as (,u(Z) =
Jo tie(Ze) dvy(c). Let (hy)nen be an enumeration of H and set

W, ={(c,z) e W: mw(x) = mp(hpzx) and h,x € V - C}.

We claim that |J,, W, = W. Indeed, for each (c,z) € W the set of g € G such that
gx € V - ¢ is non-empty and open, hence there is h,, € H such that h,xz € V - c.

Finally, A is non-negligible by assumption, i.e., 0 < p(A4) = (. u(C(A4)), so there
exists W, such that (.u(¢(A) NW,,) > 0, which translates into the required

p{z e A:hpz € V- C and mpy(x) = Ty (hpz)}) > 0. O

LEMMA 4.10. For all non-negligible W-proportionate Borel sets A,B C X,
there exists h € H such that

uw{x € A:hx € B and my(z) = mw(hx)}) > 0.
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PRrOOF. The plan is to reduce the setup of this lemma to that of Lemma [4.8
Let V' C N be a symmetric neighborhood of the identity that is furthermore small
enough to guarantee that W is V4-lacunary. Apply Lemma to find hy € H such
that for
A'={r€eA:hx eV Cand my(z) =my(hiz)}

one has p(A’) > 0. Set Ay = hyA’, By = my,) ({c € C : (A1) > 0}) N B and note
that A; and B; are non-negligible W-proportionate sets. Moreover, A; CV -C by
construction.

Repeat the same steps for By and find hy € H such that for

B, ={z € By : hgx € V - C and my(z) = my(haz)}

we have u(B}) > 0. Set By = ho B} and Ay = A1 Ny, ({c € C : pe(B2) > 0}). Once
again, sets As and By are non-negligible, W-proportionate and are both contained
inV-C.

We now apply Lemma [1:8] to sets Ao, By and W, viewed as a V-lacunary
tessellation, yielding an open U C V3 such that u(gAs N By) > 0 for all g € U. Note
that since U C V3 and W is, in fact, V*-lacunary, the equality my(z) = mw(g92)
holds for all z € V - C and g € U. We conclude that u(hy 'ghi AN B) > 0 for all
g € U and hence any h € hy YUhy N H satisfies the conclusion of the lemma. [l

A measure-preserving map T : A — B is W-coherent if u-almost surely one
has my(x) = Ty (Tx).

LEMMA 4.11. For all W-equimeasurable Borel sets A, B C X, there exists
a W-coherent H-decomposable measure-preserving bijection T : A — B.

PRrOOF. Let (h,)nen be an enumeration of H. Consider the set
Ag={z € A: hoz € B and my(z) = mpy(hoz)},

and let By = hgAp. Note that the sets A\ Ay and B\ By are W-equimeasurable,
so we may continue in the same fashion and construct sets Ay such that

Ay = {:r € A\ |_| A;:hgx € B\ |_| B; and my(x) = Ww(hkx)}.
i<k i<k
We define T': | |, ey Ar — [zen Br by the condition Tz = hyx for x € Ay.

Sets A\ | ey Ax and B\ | |,cy Br are W-equimeasurable. If either one of
them (and thus necessarily both of them) were non-negligible, Lemma would
yields an element i € H that moves a portion of A\ | ],y Ax into B\ | |,y Bk,
contradicting the construction. We conclude that

w(AN || A =0=pu(B\ || By
keN keN

and T is therefore as required. (I

LEMMA 4.12. Suppose W is a cocompact tessellation and let A, B C X be W-
equimeasurable Borel sets. For any € > 0 and any W-coherent measure-preserving
T : A — B there exists is a W-coherent H-decomposable T : A — B such that
esssup,c 4 D(Tx, Tx) < e.
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PRrROOF. Let V be a K’-cocompact tessellation over some cross-section C’ such
that the diameter of each region in V is less than e. Suppose W is K-cocompact.
By Lemma we can find a finite partition of ¢’ = | |, C! such that each C is
K'K?K'-lacunary, which guarantees that, for each i, every W, intersects at most one
class Ve, ¢ € Cj. For each i,j < nset Aj ) ={z € A:my(z) € C},my(Tx) € C}}
and B(; ;) = T A, j)- We re-enumerate sets A(; ;) and B; ;) as a sequence Ay, By,
k < n? and note that for all 2,y € Ay one has

mw(z) = mw(y) = (mv(z) = mv(y) and my(Tz) = 7 (Ty)).
Moreover, sets Ay and T(Ay) are W-equimeasurable, so Lemma yields W-
coherent H-decomposable measure-preserving maps Ty : Ay — T(Ay). The trans-
formation T': A — B can now be defined by the condition Tz = Tz whenever
x € Ag. It is easy to check that T is as claimed. (I

,)

ProOOF OoF THEOREM [£.2] Fix a cocompact cross-section C, and let (U,,), be a
nested and exhaustive sequence of compact neighborhoods of the identity in G. For
all n € N, select based on Lemma a finite sequence of cocompact cross-sections

y-..,Cy such that each Ci'" is U,-lacunary and C = L]f;l C!'. Re-enumerate
cross-sections C*, n € N, 1 < i < ky,, into a sequence (C)72, and let Vi be the

Voronoi tessellation over Cy.

Let Ag = {z € X : mp,(z) = my,(Tx)}, and use Lemma to find an H-
decomposable measure-preserving map Ty : Ag — T'(Ap) that satisfies the inequality
esssup,¢ 4, D(Tox, Tx) < €. Set

Ay ={z € X :my,(x) =y, (Tz) and x ¢ |_| Ar}
1<k
and observe that Ay, k € N, form a partition of X. Find transformations T} :
Ay, — T(Ag) by repeated applications of Lemma applied to the tessellations
Vi. The element S € [G ~ X defined by Sz = Ty« satisfies the conclusion of the
theorem. O

4.2. Orbital transformations

Let G ~ X be a free measure-preserving action of a locally compact Polish group
on a standard probability space. Fix a right-invariant Haar measure A on GG. Any
orbit [z]r, can be identified with the group itself via the map G 3 g — gz € [z]rg,
and A can be pushed via this identification onto orbits resulting in a collection
(Az)zex of measures on X defined by A\ (4) = \{g € G : gz € A}). Right
invariance of the measure ensures that A\, depends only on the orbit [z]g, and is
independent of the choice of the base point, i.e., A\, = Ay whenever zRay.

This section focuses on two main facts: the so-called mass-transport principle,
given in Eq. below, and non-singularity of the transformations induced by
elements of [G ~ X] onto orbits of the action, formulated in Proposition
Both of these topics have been discussed in the literature in many related contexts
including, for instance, [CLM18, Appen. A] and the treatise [ADROO0|. We are,
however, not aware of any specific reference from which Eq. and Proposition
can be readily deduced. The following derivations are therefore included for reader’s
convenience, with the disclaimer that these results are likely to be known to experts.

Freeness of the action allows us to identify the equivalence relation Rg with
XxGviad: X xG— Rg, ®(x,9) = (x,9z). The push-forward ®.(p x A) of the
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product measure is denoted by M and can equivalently be defined by
M) = [ AulAs) dute),

where A C Rg and 4, ={y € X : (x,y) € A}.

In general, the flip transformation o : R¢ — Rg, o(z,y) = (y,z), is not
M-invariant. Set ¥ : X x G = X x G to be ¥ = &1 0 g 0 ®, which amounts to
V(z,g) = (92,97 '). Following the computation as in [CLM18, Prop. A.11], one
can easily check that U,(u x \) = p x X, where \ is the associated left-invariant
measure, X(A) = A(A™1). If we define the measure M on R to be

W) = #.0x %) = [ 340 duto)

then o.M = M. In particular, o is M-invariant if and only if A = /):, ie, Gis
unimodular.

Let A : G — R>? be the left Haar modulus function given for ¢ € G by
A(gA) = A(g)A(A). Recall that A : G — R>? is a continuous homomorphism (see,
for instance, |[Nac65, Prop. 7]), measures A and A belong to the same measure class
and £ (g) = A(g™!) for all g € G (see [Nac65| p. 79]).

A function f : Rg — R is M-integrable if and only if X x G > (z, g) — f(z, gx)
is (1 X N)- integrable Which together with the expression for the Radon-Nikodym

d(uxX) _
d(pxX)

//fx g-x)dA(g)du(x //A (g-x,2)d\g)du(z).

When the group G is unimodular, this expression attains a very symmetric form
and is known as the mass-transport principle:

(4.2) //fmga:d)\ Ydu(x //fg x, ) dA(g)du(z).

Any automorphism T' € [G ~ X | induces for each z € X a transformation of
the o-finite measure space (X, A;). In general, T does not preserve \,, however, it
is always non-singular, and the Radon-Nikodym derivative dg;:‘l' can be described
explicitly. Note that the full group [G ~ X ] admits two natural actions on the
equivalence relation Rg: the left action [ is given by Ir(z,y) = (Tz,y), and
the right action r is defined as rp(z,y) = (x,Ty). A straightforward verification
(see |CLM18| Lem. A.9]) shows that [ is always M-invariant. Since rp oo = o olp,
for all T € [G ~ X] we have

derivative £ and Fubini’s theorem yields the following identity:

—~

(re)M = (rp00),M = (6 0lp).M = o.M = M.

Let © = ®~torpo®,ie., O(z,9) = (2, pry(x)). The equality (rT)*M\: M is
equivalent to ©,(u x A\) = p x A. The latter implies that each Borel B C G and all
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measurable A C X we have
/AX(B)du — (1 x N(A x B) = 0.(u x N)(A x B)
= (nx N({(x,9) € X x G : (z, pry(w)) € A x BY)

Fubini’s theorem = / /)\\({g € G : prgy(z) € B}) du(zx)
A

- /AX({Q € G:grecT 'Bx})du(z),

which is possible only if \({g € G : gz € T~ Bx}) = \(B) for y-almost all z. Passing
to the measures on the orbits, this translates for each B into Xw(T_le) = XI(BQT)
If (B,)nen is a countable algebra of Borel sets in G that generates the whole Borel
o-algebra, then for each z € X, (B,x)nen is an algebra of Borel subsets of the
orbit [z]gr,, which generates the Borel o- algebra on it. We have established that for
p-almost all z € X the two measures, )\ and T, )\w, coincide on each B,x, n € N,
thus p-almost surely )\ =T, )\

Equality % (g) = A(g™?)

§§: (y) = Alp(z,y) 1) = Ap(y, z))

and the Radon Nikodym derivative dT)\"\vm can now be computed as follows.
AT\, AT Ny, . AT, , . dA,
(y) = “(y) =) ()
dAy dT. X, dX\y dAy

d\,

~  dT )\, d\ d\,
* A\ xT x T_1 .
(T 'y) dAm(y)

T preservers A\, = = . = —
ey - W i

e 1 N\ dA,
= (@) Fw
= Ap(z, T~ 1y) ) " Alp(z,y) ™)
= A(p(x, T 1y) - ply, @) = Alpr—1(y)).

We summarize the content of this section into a proposition.

PROPOSITION 4.13. Let G be a locally compact Polish group acting freely
G ~ X on a standard probability space (X, ). Let X be a right Haar measure on G,
A : G — R>Y be the corresponding Haar modulus, and let (A\y)zex be the family of
measures obtained by pushing A onto orbits via the action map. Each T € [G ~ X]
induces a non- singular tmnsformation of (X )\ ) for almost every x € X, and
moreover one has Az( fA (pr-1(y)) dAs(y) for all Borel sets A C X.
If G is unimodular, then T, )\ = Az for p- almost all x € X.

For future reference, we isolate a simple lemma, which is an immediate conse-
quence of Fubini’s theorem.

LEMMA 4.14. Let G be a locally compact Polish h group acting freely on a standard
probability space (X, p). Let A, )\ (A2)zex, and (A)meX be as above. For any Borel
set A C X the following are equivalent:

(1) pu(4) =0
(2) A\i(A) =0 for p-almost all © € X;
(3) Na(A) =0 for p-almost all z € X.
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Proor. (I <= Using Fubini’s Theorem on (X X G, X ) to rearrange the
order of quantifiers, one has:

WA =0 <= Vge GVWzre X gz g A
= VreXVgeGgrg A «— Yo X \(A)=0.

2) = is evident, since A and \ are equivalent measures, hence so are A,
and A, for all x € X. O

4.3. The Hopf decomposition of elements of the full group

Fix an element T € [G ~ X] of the full group of a free measure-preserving
action of a locally compact Polish group GG. As explained in Section [4.2) T acts
naturally in a non-singular manner on each G-orbit. This action thus has a Hopf
decomposition (see Appendix . We will now explain how to understand globally
this decomposition, obtaining a generalization of the fact that when G is discrete,
any element of the full group decomposes the space into a periodic and an aperiodic
part.

Let us pick a cocompact cross-section C and let V¢ be the associated Voronoi
tessellation (see Appendix . Set m¢ : X — C to be the projection map given by
the condition (m¢(z),z) € Ve for all © € X. Define the dissipative and conservative
sets as follows:

D = {z € X : 3n € N Vk € Z such that |k| > n one has mc(z) # mc(T"z)},
C’z{xEX:VnENElkl,kg € Z such that
ki < —n,n < ke and me(TH z) = me(z) = me(THx) }.

In plain words, the dissipative set D consists of those points z whose orbit has a
finite intersection with the Voronoi region of x. The conservative set C, on the other
hand, collects all the points whose orbit is bi-recurrent in the region. We argue in
Proposition that sets D and C induce the Hopf decomposition for T’ [mRT for
almost every z € X; in particular, D U C' is a partition of X, which is independent
of the choice of the cross-section C.

LEMMA 4.15. Sets D and C' partition the phase space: X = D LI C.
PrROOF. Define sets N and N_ according to
Ny ={z e X\ (DUC):Vk>1nc(T"z) # mc(x)},
N_={zeX\(DUC):Vk>1me(T *z) # mc(z)},

and note that X \ (DU C) C Uy TH(N4 U N_). To show that X = DU C it is
enough to verify that u(Ny) =0 = u(N-).

This is done by noting that these sets admit pairwise disjoint copies using
piecewise translations by powers of T. In view of the fact that T is measure-
preserving, this implies that N, and N_ are null. To be more precise, set N = N_
and define inductively N™ = {T*®)g : x € N~ '}, where k(z) > 1 is the smallest
natural number such that e (7% z) = 7¢(x). Note that k(x) is well-defined, for
otherwise = would belong to D. Sets N, n € N, are pairwise disjoint, and have the
same measure since T' is measure-preserving. We conclude that p(N_) = 0. The
argument for pu(Ny) = 0 is similar. O
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PROPOSITION 4.16 (Hopf decomposition). Let G ~ X be a free measure-
preserving action of a locally compact Polish group on a standard probability space
(X, ). Let X\ be a right Haar measure on G and (A;)zex be the push-forward of A
onto the orbits as described in Section . For any element T € [G ~ X], the
measurable T-invariant partition X = DUC defined above satisfies that for u-almost
all x € X the partition [z|r., = ([t]re ND)U ([x]re NC) is the Hopf decomposition
for T i), on ([x]re, Ax). Moreover, there is only one partition X = DU C
satisfying this property up to null sets.

PROOF. According to Proposition we may assume that for all x € X the
map T [, [#]re = [2]re is a non-singular transformation with respect to A,
and satisfies \,(TA) = [, A(pr(y)) dAz(y) for all Borel A C X.

Let [z]r, = Dy UCy, x € X, denote the Hopf’s decomposition for T' [1,, .
For any c € C, the set

We={z€Ve)e: Tha ¢ (Vo) for all k > 1}

is a wandering set and therefore WC C D, uptoanull set. If z € D satisfiesz € (Ve).,
c € C, then [z]r, N (V). is finite, and therefore [x]r, N(Ve)e € Upes T*W,, whence
also
[zlrenDC ) |JT'W.CD,.
ceCnlz]r g kEZ

CLAIM. We have A\, ([z]r, NC N D,) =0 for each z € X.

PROOF OF THE CLAIM. Otherwise we can find ¢ € C N [z]g, and a wandering
set W C [z]re N (Ve)e N C of positive measure, A, (W) > 0. Construct a sequence
of sets W, by setting Wy = W and

W, = {Tk"(y)y :y € Wy and k,(y) is minimal such that

me(TH W) = e (y) and T @y & | ] Wi},
k<n

where the value of k,(y) is well-defined for each y € Wy and n € N, since all
points in C' return to their Voronoi domain infinitely often. Define a transformation
Sp: Wy — W, as S,(y) = TF Wy, and note that for all n € N one has pg, (y) €
p((Ve)e, Ve)e). The region p((Ve)e, (Ve)e) is precompact, since C is cocompact, and
therefore using continuity of the Haar modulus A : G — R>° one can pick € > 0
such that A(pg, (y)) > € for all y € Wy and all n € N.

Since S, is composed of powers of T', Proposition ensures that

Aa(SuWW) = [ Alps, (1) dXa (o),
Wo

whence A, (S, Wo) > €A, (W) for each n € N. We now arrive at a contradiction,

as W,, n € N, form a pairwise disjoint infinite family of subsets of (V¢). whose

measure is uniformly bounded away from zero by e, (W), which is impossible, since

Az((Ve)e) < oo by cocompactness of C. This finishes the proof of the claim.  Uepaim

We have established by now that D N [z]g, C D, and, up to a null set,
C N zlrs € Cy by the claim above. Finally, u(X \ (D U C)) = 0 implies via
Lemma Az (DN [z]re ) U(CN[z]R,)) = 0 for p-almost all z € X, and therefore
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A (DN [x]re)AD,) =0 =X ((C N [x]re)AC,) p-almost surely. Sets D and C
thus satisfy the conclusion of the proposition.

For the uniqueness part of the proposition, suppose D,C and D’,C’ are two
partitions of X such that

Ao(DAD,) = 0= A\ (D'AD,) and Ay (CAC,) = 0 = A\ (C'AC,)

for p-almost all z € X. One therefore also has V¥x € X A\ (DAD') = 0 =
A (CAC”), and hence p(DAD') = 0 by Lemma [£.14] O

We end this section with a natural definition which will be useful for analyzing
elements of the full group.

DEFINITION 4.17. Let G ~ X be a free measure-preserving action of a locally
compact Polish group on a standard probability space (X, u), and let T € [G ~ X].
Consider the T-invariant partition X = D U C provided by the Hopf decomposition
of T as per the previous proposition. We say that T is dissipative when D = X
and that T" is conservative when C' = X.

When G is discrete, observe that T is dissipative if and only if it is aperiodic
(all its orbits are infinite), and that T is conservative if and only if it is periodic (all
its orbits are finite).

EXAMPLE 4.18. Let us give a general example of dissipative elements of the
full group. Let G A X be a free measure-preserving action of a locally compact
Polish group on a standard probability space (X, u). If g € G generates a discrete
infinite subgroup, then the element of the full group «(g) is dissipative. Indeed, the
action of a(g) on each orbit is isomorphic to the g-action by left translation on G
endowed with its right Haar measure, which is dissipative since it admits a Borel
fundamental domain and has only infinite orbits. For instance, if G = R, such a
domain is given by the interval [0, g) (or (g, 0], if g is negative).

In Chapter [7] we build an interesting example of a conservative element in the
full group of any free measure-preserving flow: its action on each orbit is actually
ergodic, and its cocycle is bounded.

4.4. L' full groups and L' orbit equivalence

We now restrict ourselves to the setup where the acting group G is locally
compact Polish and compactly generated, endowed with a maximal compatible norm
Il (the existence of such a norm for locally compact Polish group is equivalent
to being compactly generated, see |[Ros21, Cor. 2.8 and Thm. 2.53]). For such a
group, as explained in Section it makes sense to talk about the associated L*
full group by endowing the group with a maximal norm.

The following definition is the natural extension of the notion of L! orbit
equivalence to the locally compact case, stated in terms of full groups.

DEFINITION 4.19. Let a and 3 be the respective measure-preserving actions
of two locally compact Polish compactly generated groups G and H on a standard
probability space (X, u). We say that o and 3 are L! orbit equivalent when there
is a measure-preserving transformation S € Aut(X, u) such that for all g € G and
all h € H,

Sa(g)S~t e [H A X]; and S"L8(h)S € [G A X]i.
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In other words, up to conjugating a by S, we have that the image of « is contained
in the L! full group of 3, and the image of 3 is contained in the L' full group of «.

We now show that L' full groups do remember actions up to L! orbit equivalence
as abstract groups. This is done by finding a spacial realization of the isomorphism
between the full groups. Such techniques originated in the work of H. Dye [Dye59|
and have been greatly generalized by D. H. Fremlin [Fre04) 384D]. We recall
that a subgroup G of Aut(X,p) is said to have many involutions if for any
non-trivial measurable A C X there exists a non-trivial involution U € G such that
suppU C A. The group of quasi-measure-preserving transformations of (X, p) is
denoted by Aut* (X, u).

THEOREM 4.20 (Fremlin). Let G,H be subgroups of Aut(X,u) with many

involutions. For any isomorphism v : G — H there exists S € Aut™(X, u) such
that (T) = STS™! for all T € G.

PROPOSITION 4.21. If two ergodic measure-preserving actions of locally compact
compactly generated Polish groups have isomorphic L' full groups, then they are
also L' orbit equivalent.

PROOF. Denote by G A and H rB\v the two actions on the same standard
probability space (X, u). Since the L! full groups of ergodic actions have many

involutions (see, for example, Lemma 7 any isomorphism ¢ : [G A X h =

[H A X]1 admits a spatial realization by some S € Aut*(X,u). The Radon—
Nikodym derivative of S,u with respect to u is easily seen to be preserved by every

element of [H rﬁx X1, and hence must be constant by ergodicity. We conclude that
S € Aut(X,u), and therefore by the definition the actions a and 8 are L! orbit
equivalent. ([l

REMARK 4.22. Similarly to the finitely generated case [LM21, Sec. 8.1], one
could define L' full orbit equivalence between actions as equality of L' full groups
up to conjugacy, which is a strengthening of L! orbit equivalence (indeed the latter
only requires inclusion of each acting group in the L' full group of the other acting
group). It would be interesting to have examples of actions which are L' orbit
equivalent, but not L! fully orbit equivalent.

We end this section by showing that L' orbit equivalence is equivalent to a
stronger definition where we ask that, up to conjugating o by S, we moreover have
that, on a full measure set Xg C X, the a and /3 orbits coincide. This will be a
direct consequence of the following proposition. The proof of this proposition is the
same as that of [CLM16| Prop. 3.8] which was not stated in the level of generality
we need. Since it is short, we reproduce it here.

PROPOSITION 4.23. Let G and H be two locally compact Polish groups acting
in a Borel measure-preserving manner on a standard probability space (X, u), denote
by a the G-action and suppose that o(G) < [H ~ X|. Then there is a full measure
Borel subset Xog C X such that

RanN (X() X Xo) CRH.

PRrROOF. Let A be the Haar measure on G. Since o(G) < [H ~ X], for all
g € G and almost all z € X, we have gr € Hz. By Fubini’s theorem, this implies
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that the Borel set
Xo={x € X : for A-almost all g € G, we have gr € Hz}

has full measure. Now let € X, and let g; € G be such that gz € Xy. We want
to show that g1z € Hz.
Since x and gy« are in Xy, the sets

A={geG:gx e Hx} and B={g9g€G:gx € Hgz}

have full measure and so AN B has full measure. Take g € AN B, and note that
gr € Hx N Hg;z, so the two orbits Hx and Hg;x intersect, hence g1z € Hx. U

COROLLARY 4.24. Two measure-preserving actions of locally compact compact
compactly generated Polish groups G and H on a standard probability space (X, )
are L1 orbit equivalent if and only if they can be conjugated so as to share the same
orbits on a full measure Borel subset Xo C X, and for all g € G and h € H there
are Borel maps

palg, ) : Xo— H and pg(h, -): Xo = G
such that for all x € X,
g -z =pc(g,x) -x and h-x = pg(h,x) -,

and finally, if we denote by ||| and ||-||; mazimal norms on G and H respectively,
then

i 6 (9; @)l g dpu(x) < 00 and /X o (h, )| ¢ dp(z) < +oc.

REMARK 4.25. Note that both pg and py are actually Borel globally (as maps
pc:GxXg— Hand py : Hx Xg — @) as a consequence of the Arsenin selection
theorem for Borel sets with K, sections and the fact that point stabilizers are closed,
a result of D. Miller.

PROOF OF COROLLARY .24l Tt is clear from the definition of L! full groups
that the conditions in the corollary are sufficient for L! orbit equivalence. Observe
that up to conjugating the two actions, they do share the same full group. Since
L! full groups contain the acting groups, we can apply Proposition twice and
get the desired full measure Borel subset X restricted to which orbits coincide.
The remaining statements are then direct consequences of the definition of L full
groups. [l

We will see in the final chapter that there are free ergodic R-flows which are
not L' orbit equivalent. This will be done by relating L' orbit equivalence to
flip-Kakutani equivalence. In the discrete amenable case, an important result of
Austin shows that entropy is preserved by L! orbit equivalence [Aus16]. We wonder
what happens in the general locally compact setup.

QUESTION 4.26. Let G be an amenable non-discrete non-compact compactly
generated locally compact Polish group. Are there two measure-preserving ergodic
actions of G which are not L' orbit equivalent?



CHAPTER 5

Derived L! full groups for locally compact
amenable groups

Given a measure-preserving action of a normed Polish group (G, ||-]|) on (X, p),
the derived L' full group D([G ~ X];) of the action is by definition the closure
in [G ~ X]; of the group generated by commutators, i.e., elements of the form
TUT- U, where T,U € [G ~ X];. Provided the G-action is aperiodic, the latter
can be described in three different ways using the fact that [G ~ X]; is induction
friendly, as explained in the Section [3.2] (see Corollary [3.15)):

e D([G ~ X]1) is the closure of the group generated by involutions;

e D([G ~ X];) is the closure of the group generated by 3-cycles;

e D([G ~ X];) is the closure of the group generated by periodic elements.
In particular, all periodic elements of [G ~ X]; actually belong to D(|G ~ X]1).

Compared to the previous chapter, we impose one further restriction on the act-
ing group, and consider actions of a locally compact amenable Polish normed group
(G, |Il)- Appendix G of [BAIHVO08| contains an excellent review of amenability
for locally compact Polish groups. As before, we fix a measure-preserving action
G ~ X on a standard probability space (X, u1), and let D : Rg — RZ% denote the
family of metrics induced onto the orbits by the norm.

In Section we will first exhibit a dense increasing chain of subgroups
in D([G ~ X]1). This dense chain is used in the two remaining sections. In
Section [5.2] we show that amenability of the group is reflected in whirly amenability
of D(|[G ~ X]1), while in Section we prove by a Baire category argument that
D(]G ~ X]1) has a dense 2-generated subgroup.

5.1. Dense chain of subgroups

An equivalence relation R C R¢ is said to be uniformly bounded if there
is M > 0and X’ C X such that u(X \ X') =0 and sup(,, ,.)er’ D(21,22) < M,
where R = RN X' x X'.

LEMMA 5.1. Let (G, ||-||) be a locally compact amenable Polish normed group
acting on a standard probability space (X,u). There exists a sequence of cross-
sections Cp, n € N, and tessellations W,, over C,, such that for all n € N

(1) Rw, € Rw, ., and Upen R, = Ra (up to a null set);
(2) Ry, is uniformly bounded.

PrOOF. Let C be a cocompact cross-section, Ve be the Voronoi tessellation
over C, my, : X — C be the associated reduction, and v = (my,)«u be the push-
forward measure on C. Recall that Ry, is uniformly bounded, since C is cocompact.
Let E be the equivalence relation obtained by restricting R onto C. By a theorem of
A. Connes, J. Feldman, and B. Weiss |[CFW81|, E is hyperfinite on an invariant set

39
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of v-full measure. Throwing away a G-invariant null set, we may write £ = J,, En,
where (E,)nen is an increasing sequence of Borel equivalence relations with finite
classes. For m,n € N, define A,, ,,, to be the set of points in the cross-section whose
FE,-class is bounded in diameter by m:

Apm = {c € C: D(cy,c2) <m for all ¢1,ce € C such that ¢; E,c and czEnc}.

Note that the sets A,, ,,, are E,-invariant, nested, and {J,, An,m = C for every n € N.
Pick m,, so large as to ensure v(C \ Ay m, ) < 27" and let B,, = (\;>,, Ak,m,- The
sets B,, are E,-invariant, increasing, and lim,, v(B,) = v(C). Define equivalence
relations F), on C by setting ¢y Fj,co whenever ¢; = ¢ or ¢1,c0 € B, and c¢1 E,co.
Note that D(c1,c2) < m,, whenever ¢ F,cy. Let C,, C C be a Borel transversal for
F,, and define W,, = {(¢,z) € C,, x X : cFmy, (x)}. It is straightforward to check
that each W, is a tessellation over C,, and equivalence relations Ry, satisfy the
conclusions of the lemma. O

The equivalence relations Ry, produced by Lemma give rise to a nested
chain of groups [Rw,]| < [Rw,] < ---. Some basic facts about such groups can be
found in Appendix The following lemma establishes that such a chain is dense
in the derived L' full group.

LEMMA 5.2. Let (G, ||-||) be a locally compact amenable Polish normed group
acting on a standard probability space (X, u) and let (Rp)nen be a sequence of
equivalence relations as in Lemma[5.1 If the action is aperiodic, then the union
U,,[Rn] is contained in the derived L full group D([G ~ X|1) and is dense therein.

PROOF. By definition, [R,] is a subgroup of [R¢]. Since equivalence relations
R, are uniformly bounded, we actually have [R,] < [G ~ X];, and the topology
induced by the L! metric on [R,] coincides with the topology induced from [Rg].
Moreover, in view of Proposition [R.] is topologically generated by periodic
transformations, so we actually have [R,,] < D([G ~ X];) as a consequence of
Lemma and Corollary

It remains to verify that the union J, [R,] is dense in D([G ~ X];). To
this end, recall that by Corollary the derived L! full group D([G ~ X];) is
topologically generated by involutions. So let U € D([G ~ X];) be an involution
and set X, = {r € X : (z,U(z)) € R}, n € N. Note that X,, is U-invariant
since U is an involution. Moreover, u(X,) — 1 as |J, Rn = Rq, and thus the
induced transformations Uy, € [R,] converge to U in the topology of [G ~ X ;.
We conclude that | J,,[R,] is dense in the derived L' full group. O

COROLLARY 5.3. Let (G, ||-||) be a locally compact amenable Polish normed
group acting on a standard probability space (X, ). Suppose that almost every orbit
of the action is uncountable. There exists a chain Hy < Hy < --- < D([G ~ X]1)
of closed subgroups such that \J,, Hy is dense in D([G ~ X|1), and each H, is
isomorphic to L°(Y,,, v,, Aut([0,1], X)) for some standard Lebesgue space (Yy,vy).
If moreover each orbit of the action has measure zero, then one can assume that
all (Y, vy,) are atomless and each H, is isomorphic to LO([0,1], X, Aut([0, 1], \)).

PrRoOF. Apply Lemmas and to get a dense chain of subgroups [Rg] <
[R1] < --- < D(|[G ~ X]1) and use Corollary to deduce that each [R,,] has
the desired form. O
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COROLLARY 5.4. Let (G,||||) be a locally compact amenable Polish normed
group acting on a standard probability space (X, u). If the action is aperiodic, then
the set of periodic elements is dense in the derived L' full group D([G ~ X]1).

PRrOOF. Consider a chain of subgroups [R,] given by Lemma Periodic
elements are dense in these groups for their natural topology (see Proposition
and the discussion preceding it). These topologies are compatible with the standard
Borel structure of Aut(X, 1) induced by the weak topology and therefore must refine
the L' topology by the standard automatic continuity arguments [BK96, Sec. 1.6].
Hence periodic elements are dense in all of D([G ~ X]1), as claimed. O

Corollary together with Proposition show that the L' norm is maximal
on derived L' full groups of aperiodic measure-preserving actions of locally compact
amenable Polish normed groups (see Sectionfor a short reminder on maximality of
norms). In particular, such groups are boundedly generated by [Ros22, Thm. 2.53].

THEOREM 5.5. Let (G, ||||) be a locally compact amenable Polish normed group
acting on a standard probability space (X, ). If the action is aperiodic, then the L*
norm is maximal on the derived L* full group D([G ~ X]1).

We do not know if the amenability hypothesis can be removed, even when G is
discrete and the action is free.

5.2. Whirly amenability

Lemma [5.2]is a powerful tool to deduce various dynamical properties of derived
L! full groups. Recall that a Polish group G is said to be whirly amenable if it
is amenable and for any continuous action of G on a compact space any invariant
measure is supported on the set of fixed points of the action. In particular, each
such action has to have some fixed points, so whirly amenable groups are extremely
amenable.

PROPOSITION 5.6. Let R be a smooth measurable equivalence relation on a
standard Lebesgue space (X, ). If w is atomless, then the full group [R] is whirly
amenable.

PROOF. In view of Proposition the full group [R] is isomorphic to
L2([0, 1], A, Aut([0, 1], M) x Aut([0, 1], \)"® x H LO([0,1], X, &,,)%,

n>1

where &, is the group of permutations of an n-element set, and €, € {0,1}, kg < Rq.
Since a product of whirly amenable groups is whirly amenable, it suffices to show that
the groups appearing in the decomposition above, namely L°([0, 1], A, Aut([0, 1], \)),
Aut([0,1],\), and L°([0,1], X, &,,), n > 1, are whirly amenable.

The group Aut([0,1],A) is whirly amenable by |GPO02| (it is, in fact, a so-
called Levy group). Finally, we apply a theorem of V. Pestov and F. M. Schnei-
der [PS17], which asserts that a group L°([0,1],\, G) is whirly amenable if and
only if G is amenable. This readily implies whirly amenability of LO([0, 1], A, &,,)
and L°([0, 1], A, Aut([0, 1], \)). O

REMARK 5.7. The assumption of p being atomless cannot be omitted in the
proposition above. Indeed, [R] will factor onto &,, for some n > 2, as long as an
R-class contains at least 2 atoms of p of the same measure. However, if all p-atoms
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within each R-class have distinct measures, then the restriction of [R] onto the
atomic part of X is trivial, which suffices to conclude the whirly amenability of the
group [R].

THEOREM 5.8. Let G ~ X be a measure-preserving action of an amenable
locally compact Polish normed group on a standard probability space (X, ). If the
action is aperiodic, then the derived L' full group D([G ~ X11) is whirly amenable.
In particular, |G ~ X1 is amenable.

PrROOF. Lemma [5.2] shows that D([G ~ X]1) has an increasing dense chain
of subgroups H,, of the form [R,], where R,, are smooth measurable equivalence
relations on X. Proposition [5.6] applies and shows that groups H,, are whirly
amenable. The latter is sufficient to conclude whirly amenability of D([G ~ X 1),
as any invariant measure for the action of the derived group is also invariant for the
induced H,, actions, hence it has to be supported on the intersection of fixed points
of all H,,, which coincides with the set of fixed points for the action of D([G ~ X ;).

The fact that [G ~ X]; is amenable now follows from the fact that every
abelian group is amenable, and every amenable extension of an amenable group
must itself be amenable (for instance, see [BAIHV 08|, Prop. G.2.2]). g

REMARK 5.9. Note that in general [G ~ X]; is not extremely amenable.
For flows, it factors onto R via the index map (see Chapter @ and R admits
continuous actions on compact spaces without fixed points, so [R ~ X]; is not
extremely amenable (and in particular, it is not whirly amenable) for any free
measure-preserving flow.

COROLLARY 5.10. Let G ~ X be a free measure-preserving action of a uni-
modular locally compact Polish group on a standard probability space (X, u). The
following are equivalent:

(1) G is amenable.

(2) [G ~ Xy is amenable.

(3) The derived L full group D([G ~ X|1) is amenable.

(4) The derived L' full group D([G ~ X]1) is extremely amenable.
(5) The derived L' full group D([G ~ X11) is whirly amenable.

PRrROOF. We established the implication = in Theorem The chain
of implications () = (4) = is straightforward, and — Ollows from
the stability of amenability under group extensions, which was already discussed in
Theorem [£.8

For the last implication (2) = (1), first recall that the orbit full group
of the action is generated by involutions. It follows that the orbit full group is
topologically generated by involutions whose cocycles are integrable (actually, one
can even ask that the cocycles are bounded). In particular, the L! full group
[G ~ X]; is dense in the orbit full group, and so assuming we conclude that
the orbit full group [G ~ X] is amenable. The amenability of G then follows
from [CLM18, Thm. 5.1]. O

REMARK 5.11. We have to require unimodularity in order to be able to ap-
ply [CLM18| Thm. 5.1]. It seems likely that the unimodularity hypothesis can be
dropped in this result, but we do not pursue this question further.
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5.3. Topological generators

We now concern ourselves with the question of determining the topological
rank of derived L' full groups. Our approach will be based on the dense chain of
subgroups established in Corollary and the first step is to study the topological
rank of the group L°([0, 1], Aut([0, 1])).

Let (Y,v) and (Z,\) be standard Lebesgue spaces. Consider the product space
Y x Z equipped with the product measure v x A\ and let R be the product of
the discrete equivalence relation on Y and the anti-discrete on Z; in other words,
(y1,21)R(ya2, 22) if and only if y; = y2. As discussed in Appendix the following
two groups are one and the same:

(1) the full group [R];
(2) the topological group LO(Y, v, Aut(Z, \)).

Suppose that (Z, ) is atomless. Pick a hyperfinite ergodic equivalence relation
E on Z so that APER(Z) N [E] is dense in Aut(Z, A), where APER(Z) stands
for the collection of aperiodic automorphisms of Z. Set Ry = idy X E to be the
equivalence relation on Y x Z given by (y1, 21)Ro(y2, 22) whenever y; = yo and
z1E25. A standard application of the Jankov-von Neumann uniformization theorem
yields the following lemma.

LEMMA 5.12. APER(Y x Z) N [Ro] is dense in [R] ~ LO(Y, v, Aut([0, 1], \)).

Our first goal is to establish that the topological rank of [R] is 2. We do so by
first verifying this under the assumption that (Y,v) is atomless, and then deducing
the general case.

We say that a topological group G is generically k-generated, k € N, if the
set of k-tuples (g1,...,9x) € G* that generate a dense subgroup of G is dense in G¥.
Note that the set of such tuples is always a G set, so if G is generically k-generated,
then a comeager set of k-tuples generates a dense subgroup of G.

PROPOSITION 5.13. Suppose that (Y,v) is atomless. The group [R] is generically
2-generated.

ProoF. By [LM16, Thm 5.1], the set of pairs
(S,T) € (APER(Y x Z)N[Ro]) x [Ro]

such that (S, T) = [Ro] is dense G for the uniform topology. In view of Lemma5.12]
this implies that [R] is generically 2-generated. O

LEMMA 5.14. For all topological groups G and H one has
k(G x H) > max{rk(G),rk(H)}.
If G x H is generically k-generated, then so are G and H as well.

PRrROOF. The inequality on ranks is immediate from the trivial observation that
if ((g1,h1),...,(gk, hg)) is dense in G x H, then (g1,...,gxr) is dense in G and
(h1,...,hg) is dense in H.

Suppose G x H is generically k-generated, pick an open set U C G* and note that
U x H* naturally corresponds to an open subset of (G x H)* via the isomorphism
(G x H)¥ ~ G¥ x H*. Since G x H is generically k-generated, there is a tuple
(gi,hi)k_, € (G x H)* that generates a dense subgroup and (g;, h;)F_, € U x HF.
We conclude that (g;)%_;, € U generates a dense subgroup of G' and the lemma
follows. (]
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LEMMA 5.15. For any separable topological group G
rk(L°([0,1], A, G)) = tk(L°([0, 1], A\, G) x GM).

If LO([0,1], A\, G) is generically k-generated for some k € N, then so is the group
LO([0,1], A\, G) x GN.

PROOF. In view of Lemma [5.14] rk(L°([0, 1], , G)) < rk(L([0,1], A, G) x GY),
and, since the group G is separable, we only need to consider the case when the
rank tk(L°([0, 1], A, G)) is finite.

It is notationally convenient to shrink the interval and work with the group
L2([0,1/2], A, G) x GY instead as it can naturally be viewed as a closed subgroup of
LO([0,1], A\, G) via the identification f x (g;)ien — ¢, where

0 fit)y ifo<t<1/2,
¢t) = g if1-27"1<t<1-2""2forieN.
Pick families (£);en dense in LY([0,1/2], X\, @), and (A, )men dense in G.

Let us call a function a : N — N a multi-index if a(i) = 0 for all but finitely
many i € N. We use N<V to denote the set of all multi-indices. Given o € N<N, let
ha = (ha(s))ien be an element of GN. Note that {h, : @ € N<N} is dense in G" and
thus {& X hg : 1 € Nya € NN} is a dense family in LO([0,1/2], A\, G) x G

Pick a tuple f1,..., fr € L°([0,1], )\, G) that generates a dense subgroup. For
each pair (I,) € N x N<N_ there exists a sequence of reduced words (w*),en in the
free group on k generators such that wh(f1,. .., fx) converges to & x h,, in measure.
By passing to a subsequence, we may assume that wh®(fi,...,fx) = & X hq
pointwise almost surely. In other words, the set

Pro={t€0,1] : wh*(f1,.... fu)(t) = (& x ha)(t)}

has Lebesgue measure 1 for each (I,a) € N x N<N and hence so does the set

P= N P

1EN qeN<N
Pick some t; € PN[1—277711—-27972) j € N, and set
i) = filt) for0<t<1/2,
S fity) for1 -2t <t<1-2772forjeN.

Elements f; naturally belong to L°([0,1/2],\,G) x GN, and we claim that they
generate a dense subgroup therein, witnessing rk(L°([0,1/2], A\, G) x GY) < k. To
this end recall that wh*(f1, ..., fr) = & X he pointwise almost surely. In particular,

Wh(fry .oy i) Toay2= & X ha Tjo.1/2)
in measure and, for each j € N,
Wi (f1y s i) (t5) = (& X ha)(t5) = Pagy)
is guaranteed by choosing ¢; € P. We conclude that
wiia(fla .- '7fk) — gl X ha
in LO([0,1/2], A\, G) x GY, and therefore
tk(LO([0,1/2], A\, G) x GY) < k.
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Finally, suppose that LY([0,1], A\, G) is generically k-generated. Choose open
sets U; € LY([0,1/2],\,G) x GN,1 < i < k. Shrinking them if necessary, we may
assume that all U; have the form U; = A} x A% x -+ x AL x GN, where A} is open
in L([0,1/2], A\, G), and A;-, j > 1, are open in G.

Pick V; C LY([0,1],\,G), 1 < i < k, to consist of those functions f satisfying
flio,1/21 € Ao and f(t) € A;j forall t € [1 —27771,1-27972) 1 < j <n. Note that
V; NLO([0,1/2],\, G) x GN = U;.

Since L°([0,1], A, G) is assumed to be generically k-generated, there is a tuple
(f1,---, fx) generating a dense subgroup in L°([0, 1], A, G) such that f; € V; for each i.
Running the above construction, we get a tuple (fi, ..., fr) € L°([0,1/2], A, G) x GN
such that f; € U;, 1 < i < k, whence LO([0,1/2],A,G) x GN is generically k-
generated. ([l

Lemma [5.15| remains valid if we take the product with a finite power of G, which
follows from Lemma [5.141

COROLLARY 5.16. For any separable topological group G and any m € N one
has

rk(LY(]0, 1], A\, G)) = rk(L°([0,1], A\, G)) x G™.
If tk(LO([0,1],\,Q)) is generically k-generated for some k € N, then so is the
group L°([0,1], A\, G) x G™.

We may now strengthen Proposition by dropping the assumption on (Y, v)
being atomless.

PROPOSITION 5.17. Let (Y,v) be a standard Lebesgue space and (Z,\) be a
standard probability space. The topological group LO(Y, v, Aut(Z, \)) is generically 2-
generated.

PROOF. Let Y, be the set of atoms of Y, put Yo =Y \ Y, and vy = v [y,. The
group LO(Y, v, Aut(Z, \)) is naturally isomorphic to

LO(Yy, vo, Aut(Z, A)) x Aut(Z, \)¥el.

An application of Proposition together with Lemma or Corollary
(depending on whether Y, is infinite or not) finishes the proof. O

PROPOSITION 5.18. Let G be a Polish group and let Hy < Hy < --- < G be a
dense chain of Polish subgroups, \J,, H, = G. If each H, is generically k-generated,
then G is generically k-generated.

PRrROOF. We need to show that for any open U C G* and any open V C G
there is a tuple (g1,...,gx) € U such that (g1,...,gx) NV # @. Since groups H,
are nested and J,, H, is dense in G, there is n so large that U N HY # @ and
V N H, # @. It remains to use the fact that H,, is generically k-generated to find
the required tuple. ([

THEOREM 5.19. Let G ~ X be a measure-preserving action of a locally compact
amenable Polish normed group on a standard probability space (X, u). If almost
every orbit of the action is uncountable, then the derived L' full group D([G ~ X]1)
s generically 2-generated.
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PROOF. In view of Corollary [5.3] there is a chain of subgroups

Hy<Hy < < D(Gn~ X)), (JH.=D(Gn~ X),

where each H,, is isomorphic to L°(Y,,, v, Aut([0, 1], X)) for some standard Lebesgue
space (Yy,,v,,). By Proposition every H, is generically 2-generated and we
may apply Proposition [5.18 (I

COROLLARY 5.20. Let G ~ X be a measure-preserving action of a locally
compact amenable Polish normed group on a standard probability space (X, u). If
almost every orbit of the action is uncountable, then the derived L' full group
D(|G ~ X1) has topological rank 2.

ProOOF. Theorem [5.19| implies that the topological rank is at most two. To see
that it is actually equal to 2, simply note that D([G ~ X]1) is not abelian (e.g. by
the proof of Proposition . (|

The assumption for orbits to be uncountable is essential, and Corollary is
in a striking difference with the dynamical interpretation of the topological rank of
derived L! full groups for actions of discrete groups. As shown in [LM21, Thm. 4.3],
given an aperiodic measure-preserving action of a finitely generated group I' ~ X,
the topological rank of D([I' ~ X];) is finite if and only if the action has finite
Rokhlin entropy.



CHAPTER 6

The index map for L' full groups of flows

We now turn our attention to flows, i.e., measure-preserving actions of R. Since
the group of reals is locally compact, amenable, unimodular, and, of course, Polish,
all of the results in the previous chapters apply to R-flows. A much more in-depth
understanding of L! full groups of flows is possible and is based on the existence of
the so-called index map, which we define and investigate in this chapter. This map
is a continuous homomorphism from the L! full group of the flow to the additive
group of reals, which can be thought of measuring the average shift distance. When
the flow is ergodic, such averages are the same across orbits. By taking the ergodic
decomposition of the flow F, we can adopt a slightly more general vantage point
and view the index map Z as a homomorphism into the L! space of functions on
the space of invariant measures (€,p), Z : [F|; — LY(€,p).

Understanding the kernel of the index map is the task of fundamental importance.
We will subsequently identify ker Z with the derived topological subgroup of [F]y
(Theorem @ . This will allow us to describe abelianizations of L' full groups of
flows and estimate the number of their topological generators.

It has already been mentioned that any element T of a full group of a flow induces
Lebesgue measure-preserving transformations on orbits (Section . When T
furthermore belongs to the L! full group, these transformations are special—they
leave “half-lines” invariant up to a set of finite measure. Such transformations form
the so-called commensurating group. Let us therefore begin with a more formal
treatment of this group, which has already appeared in the literature before, for
instance in [RS98].

6.1. Self commensurating automorphisms of a subset

Consider an infinite measure space (Z,\). We say that two measurable sets
A, B C Z are commensurate if the measure of their symmetric difference is finite,
AMAAB) < co. The relation of being commensurate is an equivalence relation, and
all sets of finite measure fall into a single class. Note also that if A and B are both
commensurate to some C, then so is the intersection A N B; in other words, all
equivalence classes of commensurability are closed under finite intersections.

Let €(B) denote the collection of all measurable A C Z that are commensurate
to B. Fix some Y C Z and consider the semigroup of measure-preserving transfor-
mations between elements of €(Y). More precisely, let Iso*(Y, A) be the collection
of measure-preserving maps T : A — B between sets A, B € €(Y'), which we call
the self commensurating semigroup of (Y, \).

We use the notation domT = A and rngT = B to refer to the domain and
the range of T, respectively. As usual, we identify two maps that differ on a null
set. Since classes of commensurability are closed under finite intersections, the set
Iso*(Y, \) forms a semigroup under the composition.

47
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This semigroup carries a natural equivalence relation: T ~ S whenever the
transformations disagree on a set of finite measure, A({z : Tz # Sz}) < oc.
This equivalence is, moreover, a congruence, i.e., if T} ~ S and T ~ Sy, then
Ty 0Ty ~ 51 0 S3. One may therefore push the semigroup structure from Iso*(Y, \)
onto the set of equivalence classes, which we denote by Aut*(Y,A). An important
observation is that Aut*(Y,)) is a group. Indeed, the identity corresponds to
the map = +— z on Y, and for a representative T € Iso*(Y, )\), its inverse inside
Aut*(Y, A) is, naturally, given by T~! : tng T — dom T. We call Aut*(Y, \) the self
commensurating automorphism group of Y.

The self commensurating semigroup admits an important homomorphism into
the reals, Z : Iso* (Y, \) — R, called the index map and defined by

Z(T) = A(dom T\ rngT) — A(rng T\ dom T).
LEMMA 6.1. For all T € Iso*(Y, \), the index map satisfies the following:
(1) if Ae &(Y) is such that domT C A and rngT C A, then
Z(T) = A(A\gT) — A\(A\ domT);
(2) if T' € Iso*(Y,\) is a restriction of T', that is T' = T laomT, then
Z(T") = Z(T).
Proor. If A C Z is commensurate to Y and domT C A, rngT C A, then
Z(T) = A(dom T \ rng T) — A(rng T\ dom T)
=MA\rgT) - MA\ (domT UrngT))
— (MA\domT) — A(A\ (domT UrngT)))
=AMA\rmgT) - AA\domT).
If 77 € Iso* (Y, \) is a restriction of T', then
T(domT \ domT’) = rngT \ rng T".
Thus for any A € €(Y) containing both dom 7" and rng T, item (1f) implies
Z(T) = M(A\domT) — A\(A\rngT)
=AA\domT") — A(dom T \ domT") — (A(B\tngT") — A(tng T \ rng T"))
=AA\domT") — N(A\ngT") = Z(T"),
where the equality A(domT \ dom7T’) = A(rngT \ rng7”) is based on T being
measure-preserving. ([
PROPOSITION 6.2. The index map T : Iso*(Y,\) — R is a homomorphism.
Moreover, if T,S € Iso*(Y,\) are equivalent, T ~ S, then Z(T) = Z(S).

PROOF. In view of Lemma [6.1][2), to check that Z(T} o To) = Z(T}) + Z(T3) we
may pass to restrictions of these transformations and assume that rng 7> = dom T7.
Pick a set A € €(Y) large enough to contain the domains and ranges of T} and Tb;

by Lemma [6.1{(L)
Z(Ty 0To) = A(A\rngT1) — M A\ dom T3)
=AMA\mgT)) — AMA\domT}) + A(A\ rngT) — A(A \ dom T3)
=I(T1) + Z(T»).
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For the moreover part, suppose that T, .S € Iso} (Y, \) are equivalent. Let U be
the restriction of 7" and S onto the set {z : Tx = Sz}. Using Lemma once
again, we get Z(T) = Z(U) = Z(S), hence the index map is invariant under the
equivalence relation ~. [

The proposition above implies that the index map respects the relation ~, and
hence gives rise to a map from Aut*(Y, \) to the reals.

COROLLARY 6.3. The index map factors to a group homomorphism
Z:Auwt*(Y,\) = R.

6.2. The commensurating automorphism group

Let us again consider an infinite measure space (Z,A) and Y C Z a measurable
subset. We now define the commensurating automorphism group of YV in
Z as the group of all measure-preserving transformations 7' € Aut(Z, ) such that
AMYAT(Y)) < co. We denote this group by Auty (Z, \).

Every T € Auty(Z,\) naturally gives rise to an element of Aut*(Y,\) by
considering its restriction 7" [y. The following lemma shows that in this case we may
use any other set A commensurate to Y instead without changing the corresponding
element of the commensurating group.

LEMMA 6.4. Let T € Aut(Z,\) be a measure-preserving automorphism. If
T [4€ Is0* (Y, ) for some A € €(Y), then T g€ Iso*(Y,\) and T [g~T [a for
all Bec(Y).

PROOF. Since commensuration is an equivalence relation and A is commensurate
to Y, the assumption T [ 4€ Iso* (Y, \) is equivalent to A(AAT(A)) < oo. Moreover,
given B € €(Y'), we only need to show that A(BAT(B)) is finite in order to conclude
that T g€ Iso*(Y, A). So we compute

A(BAT(B)) =A(B\ T(B)) + A(T(B) \ B)
<A(A\T(A)) + A(B\ A) + \(T(A\ B))
FA(T(A)\ A) + MA\ B) + N(T(B \ A))
—A(AAT(A)) + 2A(AAB) < .

Thus the measure A(BAT(B)) is finite, hence T' [g€ Iso*(Y, ) for all B € €(Y).
Finally, T [a~ T |p, since these transformations agree on AN B. ([l

To summarize, if T [4€ Iso* (Y, A) for some A € €(Y), then all restrictions
T |B, B € €(Y), are pairwise equivalent, hence correspond to the same element
T lye Aut*(Y, ). According to Proposition the index Z(T [y) of this element
can be computed as Z(T |y) = A(B\ T(B)) — A(B\ T~1(B)) for any B € ¢(Y).

6.3. Index map on L' full groups of R-flows

Let F = R ~ X be a free measure-preserving Borel flow, let [F]; be the
associated L' full group, where we endow R with the standard Euclidean norm,
and let T € [F];. The action of r € R upon z € X is denoted additively by x + r.
Recall that the cocycle of T is denoted by pr : X — R and is defined by the equality
T(x) = x + pr(zx) for all z € X. We are going to argue that, on every orbit, T
induces a measure-preserving transformation that belongs to the commensurate
group of RZ%, when the orbit is identified with the real line.
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Consider the function f: Rx — {—1,0,1} defined by

1 fz<y<T(x),
flz,y) =49 -1 if T(x) <y<uz,
0 otherwise.

One can think of f as a “charge function” that spreads charge +1 over each interval
(z,T(z)) and —1 over (T(x),z). Note that [, f(x,z + r)d\(r) = pr(z). Since
T belongs to the L! full group, its cocycle is integrable, which means that f is
M-integrable (see Section. We apply the mass-transport principle, which shows

that
//fszrrd)\ )du(x //forracd/\()du()

Let T, € Aut(R, A) denote the transformation induced by T onto the orbit of x
obtained by 1dent1fy1ng the origin of the real line with . The following two quantities
are therefore finite:

[ 17+ ) dar) = AR\ T (RE) + A(Ta(R20) \ ),
/Rf(x +7,2) dA(r) = A(RZ2\ T,(R=%)) — A(T,(R=%) \ R=").

In particular, T}, [g=o belongs to the commensurating group of RZ°. The second
quantity, on the other hand, is equal to the index of T, [g>0. By Section
I(Ty Tg>0) = I(Ty [gr>0) whenever 2R ry. For any T € [.7-']1, we therefore have an
orbit invariant measurable map hy : X — R given by hp(z) = [, f(z 4+, x) dA(r).
Note that for any F-invariant set Y C X, we have

(6.1) | prta)dnte) = [ hr(@) duto).

Let (€,p), X 2 z — v € &, be the ergodic decomposition of (X, u, F) (see
Appendix } Since the map hr is R r-invariant, it produces a map hr:& =R
via h(v) = ( ) for any x such that v = v, or, equivalently, via

v)= /X/Rf(a: + 7, ) dA(r)dv(z).
Note also that

| m@au) = [ [t ra)axnin) = [ o) dow).

thus hp € L'(&,R). We can now define the index map of a (possibly non-ergodic)
flow as a function Z : [F]; — L1(&,R).

DEFINITION 6.5. Let F = R ~ X be a free measure-preserving flow on
a standard probability space (X, u); let also (€,p) be the space of F-invariant
ergodic probability measures, where p is the probability measure yielding the
disintegration of . The index map is the function Z : [F]; — L'(€,R) given by

I(T)(v) = hr(v) = [y fo Fl@ +r,2) dA(r)dv(z).

PROPOSITION 6.6. For any free measure-preserving flow F =R n~ X, the index
map I : [F|1 — LY(&,R) is a continuous and surjective homomorphism.
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PROOF. The index map is a homomorphism, since, as we have discussed earlier,
hr(x) is equal to the index of T, [r>o. Continuity follows from the fact that Z
is a Borel homomorphism between Polish groups. To see surjectivity, pick any
h € L'(E,R), view it as a map h : X — R via the identification h(z) = h(v,).
Define the automorphism T' € Aut(X, u) by T'(z) = « + h(z). It is straightforward
to check that T € [F]; and Z(T) = h. O

The quotient group [F];1/ker Z naturally inherits the quotient norm given by
TkerZ||, = inf ||TS], .
[Therl, = inf TSI,
By Proposition the index map induces an isomorphism between [F];/ker Z and
LY(&,R). We argue that this isomorphism is, in fact, an isometry.

PROPOSITION 6.7. The index map Z induces an isometric isomorphism between
[Fli/ker T and L(E,R), where the former is endowed with the quotient norm and
the latter bears the usual L' norm.

Proo¥. Since [y |hr(z)|dp(z) = [, |hr(v)|dp(v), it suffices to show that for
all T € [.7:]1

Jint TSl = [ bl d.
Let T € [F];. We first show the mequahty 1nf ||TS||1 / |hr| dp.

Pick any S € kerZ. For any F- 1nvar1ant measurable Y CX, [, psdp =0 and

[ ensan= [ pris@)ane)+ [ ps@du@) = [ pran= [ nrdn

where we rely on Eq. (6.1]) and S being measure-preserving. Consider the F-invariant
sets

={zeX:hp(x) <0} and Y="={zec X:hr(z)>0}
The norm ||T'S||; can be estimated from below as follows.

781, = [ lorsldu= [ lorsldut [ lorsld
X Yy <0 Yy =0

/ pTS du' + ‘/ pTS du‘
y <o Yy =0
/ thM’-i- / thM‘
y <o y>o
:7/ th,LL+/ th,u:/ |hT|d,u
Y <0 Y =0 X

inf ||T > .
Jint TSIy = [ bl d

For the other direction, consider a transformation 7" defined by T'(z) =
x + hr(z); note that TV € [Fl1, pr(z) = hy/(x) = hp(z) for all z € X, and
T~T" € ker Z. Therefore

: < —1 _ / _ , _
ot TS < 77T =y = [ = [ bl dg,

>

We conclude that

and the desired equality of norms follows. O
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Using a similar reasoning, we get the following characterization of the L! full
group and the index map, where for all T' € [R z] we let 1 be the measure-preserving
transformation of (Rx, M) given by rr(z,y) = (z,T(y)) (see Section [4.2).

PROPOSITION 6.8. Let F = R ~ X be a free measure-preserving R-flow.
Consider the set RZ% = {(x,y) € RF : x > y}. Then for every T € [R ~ X, we
have

1T, = M (R=° A rp(RZ7)).
In particular, the L' full group of F can be seen as the commensurating group
of R20 inside the full group of R. Moreover, in the ergodic case, the index of T
as defined above is equal to its index as a commensurating transformation of the
set R0 in the sense of Section [6.1]

PROOF. Through the identification (z,t) — (x,z + ), the measure-preserving
transformation r7 is acting on X x R as idx x T}, and the set RZ° becomes X x RZY.
We then have

M(R=" A rp(RZ°)) = /X AR=? A (T, (R=7))) du(=)

:/ lpr| du
X

by the mass-transport principle, which yields the conclusion, since by the definition
of the norm ||T'||, = [y |pr| dp.
The moreover part follows from a similar computation. O

REMARK 6.9. The full group of R embeds via T — rp into the group of
measure-preserving transformations of (R, M). One could use this and the fact
that the commensurating automorphism group of R=° is a Polish group in order to
give another proof that L' full groups of measure-preserving R-flows are themselves
Polish.



CHAPTER 7

Orbitwise ergodic bounded elements of full groups

The purpose of this chapter is to contrast some of the differences in the dynamics
of the elements of full groups of Z-actions and those arising from R-flows. Let
S € [Z ~ X] be an element of the full group of a measure-preserving aperiodic
transformation and let pgr : X — Z be the cocycle associated with S* for k € Z.
Since Z is a discrete group, the conservative part in the Hopf’s decomposition for S
(see Appendix reduces to the set of periodic orbits. In particular, an aperiodic
S € [Z ~ X has to be dissipative, hence |pgr(x)| — 00 as k — co. When S belongs
to the L' full group of the action, a theorem of R. M. Belinskaja [Bel68, Thm. 3.2
strengthens this conclusion and asserts that for almost all x in the dissipative
component of S either pgr(z) = +00 or pgr(x) = —o0.

Given an arbitrary free measure-preserving flow R ~ X, we build an example of
an aperiodic S € [R ~ X]; for which the signs in {pgr(x) : k € N} keep alternating
indefinitely for almost all x € X. In fact, we present a transformation that acts
ergodically on each orbit of the flow (in particular, it is conservative and globally
ergodic as soon as the flow is ergodic). Moreover, we ensure it has a uniformly
bounded cocycle. Our argument uses a variant of the well-known cutting and
stacking construction adapted for infinite measure spaces. Additional technical
difficulties arise from the necessity to work across all orbits of the flow simultaneously.
The transformation will arise as a limit of special partial maps we call castles, which
we now define.

The pseudo full group of the flow is the set of injective Borel maps ¢ :
dom ¢ — rng ¢ between Borel sets dom ¢ C X, rng e C X, for which there exists
a countable Borel partition (A, ),en of the domain dom ¢ and a countable family
of reals (tp)nen such that ¢(z) = x + t, for every z € A,. Such maps are
measure-preserving isomorphisms between (dom ¢, it [dom ) and (rng @, 4 g ).
The support of ¢ is the set

suppy = {z € domy : p(z) 2z} U{z € mgy: ¢ ' (x) # x}.
Given ¢ in the pseudo full group and a Borel set A C X, we let
w(A) = {p(x) : x € ANdom¢}.

In particular, p(A) = & if A is disjoint from dom¢. A castle is an element ¢ of
the pseudo full group of the flow such that for B = dom ¢ \ rng ¢ the sequence
(©*(B))pen consists of pairwise disjoint subsets which cover its support. Since ¢ is
measure-preserving, for almost every z € B there is k& € N such that ©*(z) € dom ¢.
It follows that ¢! is also a castle. The set B is called the basis of the castle,
and the basis of its inverse C' is called its ceiling, which is equal to rng ¢ \ dom (.
Observe that if two castles have disjoint supports, then their union is also a castle.
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We denote by @ : B — C the element of the pseudo full group which takes every
element of the basis of ¢ to the corresponding element of the ceiling.

REMARK 7.1. Equivalently, one could define a castle as an element ¢ of the
pseudo full group which induces a graphing consisting of finite segments only
(see [KMO4, Sec. 17] for the definition of a graphing). It induces a partial order
<, defined by = <,, y if and only if there is k € N such that y = ¢*(z). The basis
of the castle is the set of minimal elements, while the ceiling is the set of maximal
ones. Finally, ¢ is the map which takes a minimal element to the unique maximal
element above it.

THEOREM 7.2. Let R ~ X be a free measure-preserving flow. There exists
S € [R~ X] that acts ergodically on every orbit of the flow and whose cocycle is
bounded by 4. Moreover, the signs in {psr(z) : k € N} keep changing indefinitely
for almost all x € X.

PROOF. Fix a free measure-preserving flow R ~ X, and let C C X be a cross-
section. Since C is lacunary, for any ¢ € C there exists min{r > 0: c+r € C};
we denote this value by gaps(c). This gives the first return map o¢ : ¢ — C via
oc(c) = ¢+ gape(c), which is Borel. There is also a natural bijective correspondence
between X and the set {(c,r) € C x RZ0:¢c € C,0 < r < gapc(c)}. Let AC be the
“Lebesgue measure” on ¢ + [0, gap.(c)) given by

M(A)=A{r eR:0 <7< gape(c),c+r e A}).

The measure 1 on X can be disintegrated as pu(A) = [, AS(A) dv(c) for some finite
(but not necessarily probability) measure v on C (see, for instance, [Slul7, Sec. 4]
and Appendix .

Let (Cpn)nen be a vanishing sequence of markers—a sequence of nested cross-
sections C; D C2 D C3--- with the empty intersection: (),.yCn = @. We may
arrange C; to be such that gape, (c) € (2,3) for all ¢ € C;. Put

Co={c+k:ce(C,ke{0,1,2}}

and Y = C; +[0,2). Note that u(X \'Y) < £. Our first goal is to define an element
@ of the pseudo full group with domain and range equal to Y such that for almost
every x € Y, the action of ¢ on the intersection of the orbit of z with Y is ergodic,
and which has cocycle bounded by 3. It will then be easy to modify ¢ to an element
of the full group whose action on each orbit of the flow is ergodic at the cost of
increasing the cocycle bound to 4.

Our first transformation ¢ will arise as the limit of a sequence of castles (¢, )nen,
with each ¢,, belonging to the pseudo full group of R¢, . We also use another family
of castles (1, )nen which allows us to extend ¢,, by “going back” from its ceiling to
its basis while keeping the cocycle bound (this is our main adjustment compared to
the usual cutting and stacking procedure). Both sequences of castles will have their
cocycles bounded by 3. Here are the basic constraints that these sequences have to
satisfy:

(1) for all n > 1, Y = supp @, U supp ¢n;
(2) for all n > 1, @p41 extends y;
(3) p(suppy,) tends to 0 as n tends to +oo.

Bases and ceilings of (¢,)nen and (¢ )nen will satisfy additional constraints
which will enable us to make the induction work and ensure ergodicity on each orbit
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of the flow. In order to specify these constraints properly, we introduce the following
notation.

Each orbit of the flow comes with the linear order < inherited from R via z < y
if and only if y = = + ¢ for some t > 0. Set k¢, (x) to be the minimum of the
intersection of C,, with the cone {y € X :y > z}.

Let D1 =Cq1 +2 C Cy and D,, be the set of those x € Dy which are maximal in
ngnl (¢) among points of Dy for some ¢ € Cy,; in other words,

D, ={z €Dy : (z,kc,(x))NCy =2}

Note that by construction the distance between x and k¢, () is less than 1 for each
x € D,,. Let v, be the map C,, — D,, which assigns to ¢ € C,, the <-least element of
D,, which is greater than c.

C1 Dl C1 Dl Cl Dl C1 D1 Cl Dl Cl
° . « @ o . . . ° . . . . °

Co Dy Co Dy (o

FIGURE 7.1. An example of cross-sections Cy (all points), C; (dots
of size e and above), Co (marked as @) and Dy, Ds.

The bases and ceilings of ¢,, and v, are as follows.
e the basis of ¢, is A, =C,, + [ ,Qn)
e the ceiling of ¢, is B, = D,, + [ , f%)
e the basis of ¢, is C,, = D,, + [ - %)
e the ceiling of 1, is D,, = C,, + [2, 5+ Qn)
Furthermore, we impose two translation conditions, which help us to preserve
the above concrete definitions of the bases and ceilings at the inductive step when
we construct ¢,+1 and ¥, 41:
e Sp(c+t)= Ln(C)+t— = 2% forallceC, and all t € [ 72n)'
o Yu(d+t)=1;"(d)+t+1forallde D, andallt € [-1, 1+ L),
The first step of the construction consists of the castle ¢; :  — x + 1, which
has the basis A; = C; + [0, 1) and ceiling By = Dy + [-1,—3), and the castle
Y1 x +— x — 1 defined for x € C; with ceiling D; = C; + [%, 1).

We now concentrate on the induction step: suppose ¢,, and v, have been built
for some n > 1, let us construct ¢, and ¥, 41.

\ -

I

_1
2

[\3\»—!
-+

The strategy is to split the basis of ¢, and v, into two equal intervals and
“interleave” the “two halves” of ¢,, with “one half” of ¢, followed by “gluing” adjacent
ceilings and basis within the same C, 1 segment (see Figure . To this end, we
introduce two intermediate castles ¢,, and 1/~Jn which will ensure that ¢, 1 “wiggles”
more than ¢,, yielding ergodicity of the final transformation.

Define two new half measure subsets of the bases A,, and C), respectively:

.Al_c +[72n+1)
'C?L_Dﬂ""[ 3tz =3+ o)
and let

. 1 1 1 1
B = () =Pt |5 g0~ 5 )
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and

- 1 1 1 1
0 _ 0y _ - Z
Dn_wn(cn)_6”+ [2+2n+1’2+2n>’

where the two equalities are consequences of the translation conditions. Let E,, be
the 1,,-saturation of C?, and note that the restriction of 1, to E,, is a castle with
support E,,, whose basis is C? and whose ceiling is D?. Finally, let

1 1
0 _ 1 _

We define the partial measure-preserving transformation &, : BUDS — CoLA?
to be used for “gluing together” ¢, and the restriction of ¥, to E,:

o &u(b) =b+ 5 € CY for all b € BY and
e &(d)=d— 4 €AY for all d € DY.

Set ¢, = ¢, U&, UYnk,, whereas in is simply the restriction of 1, onto the
complement of F,,. Observe that ¢,, has basis A}l and ceiling

1 1 1
B}L:B’M\Bg:Dn_‘— |:_2_277,+1’_2)’

while @Zn has basis
1 1 1
1 _ 0 _ 2
and ceiling
22 " gnl
We continue to have Y = supp ¢, L supp ﬁn, but the support of @n is half the
support of ¢, and p(supp ) = 3u(supp ¢p).

11 1
D}L:DH\D?l:C,ﬁ—{ + )

Ay Pny
E — o
,,,A,g;, _ |- D T O D

&n
D—g — o
,,,D,f, _ |- D T O D
(L [ N B SR B Y 134 (LA N I S
D, — C, D, «—
n ¢7L

Figure 7.2. Inductive step.

The ceiling of @, is equal to B = D,, + [—% - 271%, —%), whereas we need

the ceiling of ,, 11 to be equal to By, 41 = Dyy1 + [—% - 2,”%7 —%) We obtain the
required ¢, 41 and 1,41 out of ¢, and 1, respectively by “passing through each

element of C, \ Cpy1 7
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Note that D1 is equal to the set of d € D,, such that k¢, (d) € Cny1. Each
x € B\ B, 1 can be written uniquely as z = d + t where d € D,, \ D,,.1 and
1 1 1

1 1
& () = ke, (d) +t+ 3t o
and note that &, (z) belongs to (Cy \ Cot1) + [0, gt ) = AL \ Any1, hence &, is a
measure-preserving bijection from B} \ B, 11 onto AL\ A, 1.

The transformation @, 1 is set to be @, U &), and we claim that it is a castle
with basis A,+1 and ceiling B,,+1. This amounts to showing that for all z € A, 41,
there is k& € N such that ¢f,(z) is not defined. Pick z € A,;; and write it
as ¢o + t for some ¢y € Cpy1 and t € [0, Qn%) Let ¢; be the successor of ¢y in
Cn, which we suppose not to be an element of C, ;. By the construction of @,
and &, there is k € N such that &,(#¥(z)) € ¢ + [0, 54+ ), which means that

@f:_ll(:z:) € ¢ +[0, 54). Iterating this argument, we eventually find ko, p € N such

that ' (z) € ¢, + [0, ) for some ¢, € C, such that the successor ¢, 1 of ¢,
in C,, belongs to C,,+1. By the definition of ¢,, we must have some [ € N such that
gofl‘fll(x) = @L(gpﬁ&l(ac)) € Bj,41, whereas gafi‘j:ilﬂ(x) is not defined, thus ¢, 41 is
indeed a castle. ~

Extension 9,1 of 1, is defined similarly by connecting adjacent segments
of D! and C} by a translation. More specifically, each * € D} \ D, 11 can be
written uniquely as = ¢ + ¢ for some ¢ € C,, \ Cpq1 and t € [3, % + 5:4). The
restriction of ¢, to D, is a bijection D,, — C,,, we denote its inverse by p,, and
let £/(2) = pn(c) +t — 1. The map ¥, 41 = 1, L€/ can be checked to be a castle
with basis C,, 11 and ceiling D, ;1 as desired. It also follows that the translation
conditions continue to be satisfied by both of ¢, 1 and ¥, 41.

Transformations ¢, extend each other, so ¢ = |J,, ¢n is an element of the

pseudo full group supported on Y = supp ¢, LI supp ¢,,. Note also that

p(supp ¥nq1) = p(supp ¥n)/2,

and therefore dom ¢ =Y = rng . We claim that ¢, seen as a measure-preserving
transformation of Y, induces an ergodic measure-preserving transformation on
(y+R)NY for almost all y € Y, where y 4+ R is endowed with the Lebesgue measure.
This follows from the fact that ¢ induces a rank-one transformation of the infinite
measure space (y+R)NY: for all Borel A C (y+R)NY of finite Lebesgue measure
and all € > 0, there are BC (y+R)NY, k € N, and a subset F C {0,...,k} such
that B, ¢(B),...,¢"(B) are pairwise disjoint and

MAA (] o (B) <.
fer

Indeed, at each step n for every ¢ € C,, the iterates of ¢ + [0, Qi) by the restriction

of ¢, to the interval [c,t,(c)) are disjoint “intervals of size 27", i.e., sets of the
form t + [0, 5% ), and these iterates cover a proportion 1 — = of [¢,1,(c)) (the rest
of this interval being [c, ¢, (¢)) N supp ¥y,).

It remains to extend ¢ supported on Y to a measure-preserving transformation
S with supp S = X. Let Z = X \ 'Y be the leftover set,

Z={c+t:celC:2<t<gape ()},
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and put
Z'={c+t:cel, 2—gape, (c) <t <2}

Figure illustrates an interval between ¢ € C; and ¢ = o¢,(¢). Within this
gap, Z corresponds to [c 4+ 2,¢c + 2 + gape, (¢)), and Z’ is an interval of the exact
same length adjacent to it on the left. Note that Z’ C Y by construction. Let
n : Z' — Z be the natural translation map, n(z) = = + gape, (c) for all z € Z’
satisfying = € ¢ + [0, gape, (¢)). Observe that 7 is a measure-preserving bijection
and its cocycle is bounded by 1.

z'  Z

FIGURE 7.3. Construction of the transformation S.

We now rewire the orbits of ¢ and define S : X — X as follows (see Figure :
o(x) ife g ZUZ';
S(x) =< n(x) ifeeZz;
o(n(z)) ifzeZ.

It is straightforward to verify that S is a free measure-preserving transformation,
and the distance D(z, Sz) < 4 for all z € X, because |p,(z)] <3 and |p,(z)| <1
for all z in their domains. Note that the transformation induced by S on Y is equal
to ¢, so since the latter is ergodic on every orbit of the flow intersected with ¥ and
since X =Y U Z, it follows that S is ergodic on every orbit of the flow and satisfies
the conclusion of the theorem. |

REMARK 7.3. The bound 4 in the formulation of Theorem[7.2]is of no significance
as by rescaling the flow it can be replaced with any € > 0.



CHAPTER 8

Conservative and intermitted transformations

Interesting dynamics of conservative transformations is present only in the
non-discrete case, as it reduces to periodicity for countable group actions. Chapter [7]
provides an illustrative construction of a conservative automorphism, and shows that
they exist in L' full groups of all free flows. The present chapter is devoted to the
study of such elements. The central role is played by the concept of an intermitted
transformation, which is related to the notion of induced transformation. Using this
tool we show that all conservative elements of [R ~ X]; can be approximated by
periodic automorphisms, and hence belong to the derived L! full group of R ~ X;
see Corollary

Throughout the chapter, we fix a free measure-preserving flow R ~ X on a
standard Lebesgue space (X, ). Given a cross-section C C X, recall that we defined
an equivalence relation R¢ by declaring zR¢y whenever there is ¢ € C such that
both z and y belong to the gap between ¢ and o¢(c). More formally, xRcy if there
is ¢ € C such that p(c,z) > 0, p(c,y) > 0 and p(z,0c(c)) > 0, p(y,oc(c)) > 0. Such
an equivalence relation is smooth.

Now let T € [R ~ X be a conservative transformation. Under the action of T,
almost every point returns to its Re-class infinitely often, which suggests the idea
of the first return map.

DEFINITION 8.1. The intermitted transformation Tz, : X — X is defined
by
Trex =T"® g, where n(z) = min{n > 1: 2RI ™z},

The map T, is well-defined, since T is conservative, and it preserves the
measure y, since Tz, belongs to the full group of T

REMARK 8.2. The concept of an intermitted transformation Tr makes sense for
any equivalence relation E for which intersection of any orbit of T with any E-class is
either empty or infinite. In particular, intermitted transformations can be considered
for any conservative T € [G m~ X | in a full group of a locally compact group action.
For instance, with a cocompact cross-section C we can associate an equivalence
relation of lying in same cell of the Voronoi tessellation (see Appendix . Such an
equivalence relation does have the aforementioned transversal property, and hence
intermitted transformation is well-defined.

Note also the following connection with the more familiar construction of the
induced transformation. Let T € Aut(X, i), let A C X be a set of positive measure,
and define A to be the equivalence relation with two classes: A and X \ A. Induced
transformations T4 and T'x\ 4 commute and satisfy T4 o Tx\a4 = T4.

The next lemma forms the core of this chapter. It shows that the operation of
taking an intermitted transformation does not increase the norm. As we discuss
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later in Remark the analog of this statement is false even for R?-flows, which
perhaps justifies the technical nature of the argument.

LEMMA 83. Let T € [R ~ X|; be a conservative automorphism and let
C be a cross-section. Let also Y be the set of points where T and Tr. differ:
Y ={zr € X :Tx #Trcx}. Onehas [y |pre,|dp < [y |pr|dp.

PROOF. By the definition of Y, for any x € Y the arc from x to Tz jumps
over at least one point of C. We may therefore represent |pr(x)| as the sum of the
distance from z to the first point of C along the arc plus the rest of the arc. More
formally, for z € X let m¢(x) be the unique ¢ € C such that x € ¢+ [0, gap¢(c)).
Define o : Y — R20 by

a(z) = {|P($,Uc(7rc(x)))|, if p(z, Tx) > 0,
|p(x, me ()] if p(z, Tx) < 0.

Note that a(x) < |pr(x)|, and set 5(z) = |pr(z)| — a(x), so that

/IpTldu=/adu+/ﬁdu~
Y Y Y

For instance, in the context of Figure [8.1] a/(z4) = p(24,c2) and B(z4) = p(ca, x5).
Let us partition Y =Y’ UY", where

Y'={z €Y :p(zx,Tz) and p(x, Tr.x) have the same sign or T,z =z },

and Y = Y \ 'Y’ consists of those z € Y for which the signs of p(z,Tz) and
p(x, Tr.x) are different. For example, referring to the same figure, 2o € Y, while
T € Y’

To prove the lemma it is enough to show two inequalities:

(8.1) [ e @ldnte) < [ ata) duto),

Y
(82) [ e @lduta) < | pa)duta).

Eq. (8.1) is straightforward, since equality of signs of p(z,Tz) and p(z, Tr,x)
implies that Tz, x is closer than x to the point ¢ € C over which goes the arc from
x to Tx. For example, the point x5 in Figure [8.1]| satisfies

|pTr, (22)| = p(22,24) < p(22, C2) = a(2).

Thus |pry, ()] < a(z) for all z € Y’ and so

/ IPTRCIduS/ adué/adu,
Y’ Y’ Y

which gives . The other inequality will take us a bit more work.

For x € Y”, let N(z) > 1 be the smallest integer such that the sign of
p(x, TN@)*1g) is opposite to that of pr(x). In less formal words, N(z) is the
smallest integer such that the arc from TVN®gz to TN®+1g jumps over z. In
particular, points T*z, 1 < k < N(z), are all on the same side relative to x, while
TN@)+1g is on the other side of it. We consider the map 1 : Y — X given
by n(z) = TN®z. Properties of this map will be crucial for establishing the
inequality , so let us provide some explanations first.
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A /\/\W\
C

$2 .%'4 02
\_‘y
F1GURE 8.1. Dynamics of a conservative orbit.

Consider once again Figure [8.I] which shows a partial orbit of a point z( for
x; = T'zo up to i < 9 and several points ¢; € C. First, as we have already noted
before, zg € Y, since —xgR¢x1; moreover, xg € Y, since g = T, 2o is to the left
of xg, while 2 is to the right of it, so p(xg,z1) and p(x,z9) have the opposite
signs. Also, N(zg) = 7, because xg is the first point in the orbit to left of zq, thus
n(wg) = x7. In particular, generally TN 1y £ Tp .z, but TN+ = Tp 2 is
the case for x € Y whenever TN )1z and z are Re-equivalent.

The next point in the orbit ;7 € Y, whereas x5 € Y but x5 ¢ Y, because
Tr.r2 = x4 and both p(x2,z3) and p(xe, z4) are positive. The point x3 belongs to
Y” and has N(z3) = 1 with n(z3) = z4. Points z4,25,2¢ € Y, but whether any
of them are elements of Y is not clear from Figure as the orbit segment is
too short to clarify the values of Tr.x;, ¢ = 4,5,6. However, if 4, x5, 26 happen
to lie in Y”, then N(z5) = 1 with n(zs) = x6, and N(z4) = 3, N(zg) = 1,
n(z4) = n(ze) = 7 = n(zo). In particular, the function x — n(z) is not necessarily
one-to-one, but we are going to argue that it is always finite-to-one.

CrLam 1. If z,y € Y” are distinct points such that n(x) = n(y), then ~zRcy.

PROOF OF THE CLAIM. Suppose z,y € Y satisfy n(z) = n(y). The definition
of n implies that x and y must belong to the same orbit of 7', and we may assume
without loss of generality that y = T%ox for some ko > 1. If the orbit of 2 and
y is aperiodic, it implies that that N(z) > ko and N(y) + ko = N(z), N(y) > 1.
However, even if the orbit is periodic, either N(y) + kg = N(z) for the smallest
positive integer ko such that y = T*z or N(z)+kj = N(y) for the smallest positive
integer k{ such that x = T’“éy. Interchanging the roles of = and y if necessary, we
may therefore assume that N(y) + ko = N(z) holds for some kg > 1, TFoz = y,
regardless of the type of orbit we consider.

Suppose x and y are R¢-equivalent. Let k > 1 be the smallest natural number
for which 2 and T*x are Re-equivalent. By the assumption 2R¢ey and the choice of
ko we have k < ko < N(x). By the definition of N(x), all points Tz, 1 < i < N(x),
are on the same side of z. In particular, this applies to Tz and T*z, which shows
that p(z,Tx) and p(x, Tr.x) have the same sign, thus x ¢ Y. Oelaim

The above claim implies that the function = — n(z) is finite-to-one for the
arc from n(z) to Tn(zx) intersects only finitely many R¢-equivalence classes, and
the preimage of n(x) picks at most one point from each such class. Note also that
n(x) € Y for all x € Y, but n(z) may not be an element of Y. Among the R¢-
equivalence classes that the arc from n(z) to Tn(x) goes over, two are special—the
intervals that contain Tn(x) and n(z), respectively. Our goal will be to bound the
sum of |pry ()| over the points = with the same 7(z) value by 5(n(z)) (see Claim
3 below). For a typical point x we can bound |pry, (z)| simply by the length of the
interval of its R¢-class. For example, Figure does not specify T, x4, but we can
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be sure that |pry,, (z4)] < p(c1, c2). In view of Claim 1, such an estimate comes close
to showing that the sum of [pry, ()| over z with the same image () is bounded by
lp(n(x), Tn(x))|. It merely comes close, due to the two special R¢-classes mentioned
above, where our estimate needs to be improved. The next claim shows that one of
these special cases is of no concern as x is never R¢-equivalent to n(x).

CLAIM 2. For all x € Y" we have —zRen(x).

PROOF OF THE CLAIM. Suppose towards the contradiction that 2 Ren(z), and
let k£ > 1 be the smallest integer for which 2R¢T*(x); in particular, Trex = Tra.
Note that k < N(z) by the assumption, and by the definition of N(x), p(T*z,x)
has the same sign as pr(x), whence z ¢ Y. Oelaim

Pick some y € Y with non-empty preimage n~!(y), and let 21,..., 2, € Y be
all the elements in 7~!(y). For instance, in the situation depicted in Figure we
may have n = 3 and z; = xg, 22 = %4, 23 = Tg, and y = x7. The following claim
unlocks the path towards the inequality (8.2)).

CLa 3. In the above notation, 1" | [prr, (2i)] < B(y).

PROOF OF THE CLAIM. Recall that the arc from y to Ty crosses at least one
point in C. If ¢ € C is the first such point, then 3(y) is defined to be |p(c, T'y)|. For
instance, in the notation of Figure B(x7) = |p(cq, xs)|. Each point z; is located
under the arc from y to Ty, and by Claim 2, no point z; belongs to the interval
from c to y. In the language of our concrete example, no point z; can be between
cq and z7. As discussed before, |pry , (7)] is always bounded by the length of the
gap to which z belongs. This is sufficient to prove the claim if no z; is equivalent
to T'y, as in this case the whole R¢-equivalence class of every z; is fully contained
under the interval between ¢ and Ty, and distinct z; represent distinct R¢-classes
by Claim 1. This is the situation depicted in Figure 8.1} and our argument boils
down to the inequalities

|pr. (20)| + |pTr, (1) + [T, (25)| < p(cos c1)] + |p(er, e2)| + |p(e2, e3)]|
< |p(co, ca)| < Bla7).

Suppose there is some z; such that z;ReTy. By Claim 1 such z; must be
unique, and we assume without loss of generality that z;R¢Ty. For example, this
situation would occur if in Figure m Tx7 were equal to xg. Let ¢’ be the first
element of C over which goes the arc from z; to Tz; (it would be the point ¢; in
Figure . It is enough to show that |pry, (21)| < [p(TRc21,¢)|, as we can use
the previous estimate for all other |pry_ (2)], ¢ > 2. Note that Tr.21 = Ty, and
z1 € Y" by assumption, which implies that the signs of p(z1,Tr.21) and p(z1,¢)
are different. The latter is equivalent to saying that z; is between Tr.z; and ¢/, i.e.,
p(Tre21,¢")| = |prr,, (21)] + [p(21,¢")], and the claim follows. Oelaim

We are now ready to finish the proof of this lemma. We have already shown
that 7 is finite-to-one, so let ¥, C Y” n > 1, be such that x — 7(x) is n-to-one
onY). Let R, = n(Y,)), and recall that R, C Y. Sets R,, are pairwise disjoint.
Let ¢pn @ Ry, — Y, 1 < k < n, be Borel bijections that pick the kth point
in the preimage: Y, = ||| ¢x.n(Ry). Note that maps ¢pn : Ry — ¢pn(Rn)
are measure-preserving, since they belong to the pseudo full group of 7', and
>ohe1 lprr, (Pr.n(2))| < B(2) for all z € R, by Claim 3. One now has
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/ 1pr, (@) duz Z / Ipr @)l dpta)
Yy b1 (Rn)

" ¢n k are measure-preserving = / Z |pTr, (O ()] dp(x)

Bn =1
*.- Claim 3 < /R B(x) du(x).

Summing these inequalities over n we get

|, e @l dnta Z ) BCCILTE
s; NEUCE /Y B() dyu(z)

where the last inequality is based on the fact that sets R,, are pairwise disjoint.
This finishes the proof of the inequality (8.2]) as well as the lemma. O

Several important facts follow easily from Lemma [8:3] For one, it implies that
for any cross-section C the intermitted transformation Tz, belongs to [R ~ X;.
In fact, we have the following inequality on the norms.

COROLLARY 8.4. For any intermitted transformation Tr. one has || Tr.|1 <
1T

ProOOF. By the definition of the set ¥ in Lemma Prr. (%) = pr(z) for all

x €Y, hence
/ |pTr, | dp = / |pTr, | dpt +/ P, | dpe
X X\Y Y

LenmaBA< [ prldu+ [ lorldu= [ lprldn
X\Y Y X
which shows [|[Tr. |1 < || T|l1- O

REMARK 8.5. As we discussed in Remark the concept of an intermitted
transformation applies wider than the case of one-dimensional flows. We mention,
however, that the analog of Lemma and Corollary does not hold even for
free measure-preserving R2-flows. Consider an annulus depicted in Figure and
let T be the rotation by an angle « around the center of this annulus. Let the
equivalence relation E consist of two classes, each composing half of the ring. For
a point x such that -z ETz, Tgx will be close to the other side of the class. It is
easy to arrange the parameters (the angle o and the radii of the annulus) so that
llors ()] > |lpr(x)]| for all x such that Tz # Trx.

Every free measure-preserving flow R? ~ X admits a tiling of its orbits by rect-
angles. The transformation T’ € [R? ~ X|; can be defined similarly to Figure
on each rectangle of the tiling by splitting each tile into two equivalence classes
as in 8220l The resulting transformation 7' will have bounded orbits and satisfy
ITe|l1 > ||T||1 relative to the equivalence relation E whose classes are the half tiles.
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T

V4 :

|
|
Tgx !

(a) (b)

FIGURE 8.2. Construction of a conservative transformation 7" with
1Te(lx > 1T

When the gaps in a cross-section C are large, z and Tz will often be R¢-
equivalent, and it therefore natural to expect that T'z, will be close to T'. This
intuition is indeed valid, and the following approximation result is the most important
consequence of Lemma

LEMMA 8.6. Let T € [R ~ X |1 be a conservative transformation. For any € > 0
there exists M such for any cross-section C with gape(c) > M for all ¢ € C one
has ||ToT7gcl||1 <e.

PROOF. Let Ax = {z € X : [pr(z)| > K}, K € R", be the set of points
whose cocycle is at least K in the absolute value. Since T' € [R ~ X|;, we
may pick K > 1 is so large that fAK |or|dup < €/4. Pick any real M such that

2K?%/M < €/4. We claim that it satisfies the conclusion of the lemma. To verify
this we pick a cross-section C with all gaps having size at least M. Set as before
Y={reX:Tx #Tr,x} Since

HToTﬁclHl:/YD(Tac,TRCx)d,u(x),

our task is to estimate this integral. This can be done in a rather crude way. We can
simply use the triangle inequality D(T'w, Tr.7) < |pr(z)| + |p7r, (7)|, and deduce

/DTx Trex) dp(x /IpT\dqu/ IpTRcldu<2/ lpr| dp,

where the last inequality is based on Lemma

It remains to show that [y, [pr|dp < €/2. Let X = {c+[K, gapc(c)—K] : c € C}
be the region that leaves out intervals of length K on both sides of each point in C.
Note that for any = € X \ Ak one has 2R¢Tx and thus Tr,2z = Tz for such points.
Therefore, Y C Ax U Bg, where Bx = X \ (5( U Ak), and thus

/|pT|d,u§ /|pT|du+/|pT\dﬂ<e/4+K~2K/M<e/2. O
%

LEMMA 8.7. Let T € [R ~ X |1 be a conservative transformation. For any € > 0
there exists a periodic transformation P € [T'] such that |T o P71 < e.
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PROOF. By Lemma [8.6] we can find a cocompact cross-section C such that
|T o T%CI | < €/2. Let M be an upper bound for gaps in C. Recall that the cocycle

|pTr, ()] is uniformly bounded by M, and, in fact, the same is true for any element
in the full group of T'»,,. In particular, we may use Rokhlin’s lemma to find a periodic
P € [Tr.] such that | T, o P~1|| < €/2M, and conclude that || T, o P11 < €/2.
We therefore have

IT o P~y < IT 0 Trplh + [Tre o P71 <ce. O

COROLLARY 8.8. If T € [R ~ X]; is conservative then T belongs to the derived
full group D(IR ~ X]1), in particular its index satisfies Z(T) = 0.

PRrROOF. Follows directly from Lemma [8.7] and Corollary O






CHAPTER 9

Dissipative and monotone transformations

The previous chapter studied conservative transformations, whereas this one
concentrates on dissipative ones. Our goal will be to show that any dissipative
T € [R ~ X]; of index Z(T) = 0 belongs to the derived subgroup D([R ~ X1).
We begin however by describing some general aspects of dynamics of dissipative
automorphisms.

Recall that according to Proposition any transformation T € [R n X|
induces a T-invariant partition of the phase space X = D U C such that T|¢ is
conservative and T'|p is dissipative. Formally speaking, a transformation is said to
be dissipative if the partition trivializes to D = X. For the purpose of this chapter
it is however convenient to widen this notion just a bit by allowing T" to have fixed
points.

DEFINITION 9.1. A transformation 7' € [R ~ X] is said to be dissipative if
D =supp T, where D is the dissipative element of the Hopf’s decomposition for T

9.1. Orbit limits and monotone transformations

We begin by showing that dynamics of dissipative transformations in L' full
groups of R-flows is similar to those in L! full groups of Z actions. We do so by
establishing an analog of R. M. Belinskaja’s result [Bel68| Thm. 3.2]. Recall that
a sequence of reals is said to have an almost constant sign if all but finitely many
elements of the sequence have the same sign.

PROPOSITION 9.2. Let S be a measure-preserving transformation of the real line
which commensurates the set R™, suppose that S is dissipative. Then for almost
all x € R, the sequence of reals (S*(x) — z)ren has an almost constant sign.

PROOF. Let @ be the set of reals = such that (S*(z) — x)ren does not have an
almost constant sign, and suppose by contradiction that @ has positive measure.
Since S is dissipative, we can find a Borel wandering set A C R for .S which non-
trivially intersects ). All the translates of ' = Q N A are disjoint, and, for all
r € Q', (S%(x) — x)ren does not have an almost constant sign.

Since S is dissipative, for almost all z € @Q’, the sequence of absolute values
(|s* (m)|)k€N tends to +oo (see Proposition . In particular, there are infinitely
many points y in the S-orbit of z such that y < 0 but S(y) > 0. Since the map
Q' x Z — R which maps (x, k) to S*(z) is measure-preserving, this yields that the
set of y < 0 such that S(y) > 0 has infinite measure, contradicting the fact that S
commensurates the set R™. a

COROLLARY 9.3. Let T € [R ~ Xy be a dissipative transformation. For almost
all © € supp T, the sequence (p(x, T*(x)))ren, has an almost constant sign.

67
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PROOF. Let T € [R ~ X];. For all x € X, denote by T, the measure-preserving
transformation of R induced by T on the R-orbit of z. By the proof of Proposition|[6.8]
the integral

/X ARZO A (T,(R2)))du(z)

is finite. In particular, for almost every x € X, the transformation 7, commensurates
the set RZ%. The conclusion now follows directly from the previous proposition. [

For any dissipative transformation in an L' full group of a free locally compact
Polish group action and for almost every z € X, p(z,T"x) — 0o as n — oo, in the
sense that p(xz, T"z) eventually escapes any compact subset of the acting group.
In the context of flows, Corollary [0.3] strengthens this statement and implies that
p(z, T™z) must converge to either +o0o or —co.

COROLLARY 9.4. If T € [R ~ Xy is dissipative, then for almost every point

x € supp T either lim p(z,T"z) = +oo0 or lim p(z,T"z) = —c0. O
n—oo n—oo

In view of this corollary, there is a canonical T-invariant decomposition of

supp T’ into “positive” and “negative” orbits.

DEFINITION 9.5. Let T' € [R ~ X]; be a dissipative automorphism. Its support
is partitioned into X LI X, where

X = {z €suppT: lim p(z,T"z) = +o0},
n—o0
X = {a: €suppT : lim p(x,T"x) = —oo}.
n—oo
The set X is said to be positive evasive and X is negative evasive.

According to Corollary for almost every x € supp T, eventually either all
T™x are to the right of = or all are to the left of it. There are points = for which
the adverb “eventually” can, in fact, be dropped.

COROLLARY 9.6. Let T € [R ~ X1 be a dissipative transformation and let
A={zeX:p(@ T z) >0 for alln > 1},
A={zeX:p(x T z) <0 for alln > 1}.

The set A= AU A is a complete section for T|supp -

ProOF. We need to show that almost every orbit of T intersects A. Let
x € supp T and suppose for definiteness that € X. Since lim,,_,o p(z, T"2) = +00,
there is ng = max{n € N : p(z,T"x) < 0}, and therefore Tz € A. O

DEFINITION 9.7. A dissipative transformation T’ € [R ~ X]; is monotone if
p(x,Tz) > 0 for almost all z € X, and p(x,Tz) < 0 for almost all z € X.

COROLLARY 9.8. Let T € [R ~ X |1 be a dissipative transformation. There is
a complete section A C suppT and a periodic transformation P € [R ~ X1 N[T]
such that T'= P o T4 and Ty is monotone.

Proor. Take A to be as in Corollary and note that P =T o T;l is periodic
and satisfies the conclusions of the corollary. [
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As we discussed at the beginning of the chapter, our goal is to show that the
index of the kernel map coincides with the derived subgroup of [R ~ X];. Note
that if T'= P o Ty is as above, then Z(T') = Z(T'4), and, coupled with the results
of Chapter [§] it will suffice to show that all monotone transformations of index
zero belong to D([R ~ X ;). This will be the focus of the rest of this chapter
and will take some effort to achieve, but the main strategy is to show that such

automorphisms can be approximated by periodic maps, which is the content of
Theorem [3.15] below.

9.2. Arrival and departure sets

Throughout the rest of this chapter, we fix a cross-section C C X and a monotone
transformation T' € [R ~ X|;. The arrival set Ac is the set of the first visitors
to Ec classes: A¢ = {x € suppT : ~xEcT~'x}. Analogously, the departure set
D¢ is defined to be D¢ = {z € supp T : ~zEcTx}. We also let Ac denote Ac N X
and Ac = Ac N X; likewise for De and De. Note that T(D¢) = Ac, and thus
T~1(A¢) = Dc. There is, however, another useful map from Ac onto De.

NV VAN VL

T € A'C Tz € l_jc
tc(x) =4

FIGURE 9.1. Arrival and Departure sets.

We define the transfer value t¢ : Ac — N by the condition
te(z) =min{n >0:T"x € D¢}

and the transfer function 7¢ : Ac — D¢ is defined to be 7¢(z) = T%®)z. Note
that 7¢ is measure-preserving. The transfer value introduces a partition of the arrival
set Ac = | ],cny A¢, where A7 = tgl(n); by applying the transfer function, it also
produces a partition for the departure set: D¢ = | |,,cy D¢, where D¢ = 7¢(Ag).

In plain words, t¢(z) + 1 is the number of points in [#]g, N [z]g.. Therefore
if AC(AZ) > XS(AR) for some n > m then also AS([A%]g.) > AS([A% k). In
Sections and we modify the transformation 7" on the arrival and departure
sets and we want to do this in a way that affects as many orbits as possible as
measured by AC. This amounts to using sets A% (and D%) with as high values of
n as possible. The next lemma will be helpful in conducting such a selection in a
measurable way across all of ¢ € C.

LEMMA 9.9. Let A C X be a measurable set with a measurable partition
A=, A, and let £ :C — R=° be a measurable function such that &(c) < AS(A)
for all ¢ € C. There are measurable v : C — N and r : C — RZ° such that for
any ¢ € C for which £(c) > 0 one has

AS(( |_| An) U (Au(c) N (C+ [0,7"(6)]))) = f(C)
n>v(c)
ProOOF. For ¢ € C such that £(c) > 0 set
v(c) =min{n € N: X¢( |_| Ar) < &(0)}.

k>n
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Note that one necessarily has AS (A, () 2> €(¢) = A (L, (e) An)- Set

r(c) =min{a > 0: XS (A, N (c+[0,a])) = &(c) — AS( I_I A}

n>v(c)

These functions v and r satisfy the conclusions of the lemma. O

DEFINITION 9.10. Consider the partition of the positive arrival set Ae = LI, /Tg

and let € : € —R2%, r:C —»R2% and v: C — N be as in Lemmal9.9] The set A%
defined by the condition

12 (c) = |_| Al (c)U (AZ(C) N(c+[0,7(c)])) forallceC
n>(c)
is said to be the positive &-copious arrival set. The positive é-copious
departure set is given by D = 7¢(A%). The definitions of the negative ¢&-

copious arrival and departure sets use the partition ;lc =1, ;12 of the negative
arrival set and are analogous.

Copious sets maximize measure A$ of their saturation under the action of 7.
In other words, among all subsets A’ C A¢ for which XS(A’) = £(c), the measure
X ([A')g,) is maximal when A’(c) = A&(c). In particular, if AS(A®) is close to
XC(Ae), then we expect )\S([/TE}ET) to be close to A¢([A¢] g, ). The following lemma
quantifies this intuition.

LEMMA 9.11. Let & : C — RZ° be such that &(c) < XS Ac) for all ¢ € C,
and let A% be the {-copious arrival set constructed in Lemma . If there exists
1/2> 0 > 0 such that £(c) > (1 — §)AS(A¢) for all ¢ € C, then

M\ (@) < TX(X) for allceC,

and therefore also pu([Ac \ A&]ET) < %M(X').

An analogous statement is valid for the negative arrival set ;lc.

PROOF. Let v be as in Lemma [0.9] and note that

|| Ak cAsc)c || Ak

k>v(c) k>v(c)

whenever ¢ € C satisfies £(c) > 0. Recall that for z € A% we have zEcT* for all
0 <k <n and sets T* (/Yg) are pairwise disjoint. In particular,

M) 2 ([ 4E©)] ,,) = (o) + DAS(| ] 4E(e)
(9.1) k>v(c) k>v(c)

> (v(e) + DAS(A) = (v(e) + 1E(0).
Note also that £(c) > (1 — 6)AC(A¢) implies

(9-2) A (Ae \ A7) < €(e)8/(1 - 3).
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For any ¢ € C we have
M ([Ae(0)\ A2 () er) < N {T e : @ € Ac(e) \ A2(c),0 < k < #(e)})
+ DAS(Ae \ A2)
: +1)E(e)d/(1 - 6)
- (@) < M(X)5/(1-0).

The inequality for the measure p follows by disintegrating p into fc ().
The argument for the negative arrival set is completely analogous. O

9.3. Coherent modifications

We remind the reader that our goal is to show that any dissipative transformation
T € [R ~ X]; of index Z(T') = 0 can be approximated by periodic transformations.
One approach to “loop” the orbits of T' is by mapping De¢ (c) to Ac (c¢) and D¢ (¢)
to Ac(c) (cf. Figure . For such a modification to work, measures AS(De(c))
and A¢(A¢(c)) have to be equal. Recall that Z(T) = 0 implies that for almost
every ¢ € C, the measure of points z such that z < ¢ < Tz equals the measure of
those y for which Ty < ¢ < y. If one could guarantee that T(De¢(c)) = A¢(oc(c)),
then the aforementioned modification would indeed work. In the case of Z actions,
discreteness of the acting group allows one to find a cross-section C for which this
condition does hold. Whereas for the flows, we have to deal with the possibility that
T(De¢(c)) can be “scattered” (see Figure along the orbit and be unbounded,
which is the key reason for the increased complexity compared to the argument for
Z actions.

Since we can’t hope to “loop” all the orbits of T', we will do the next best
thing, and apply the modification of Figure on “most” orbits as measured by AC.
Copious sets discussed in Section have large saturations under T, but, generally
speaking, fail to satisfy T(ﬁé(c)) = ffé (o¢(c)) for the same reason as do the sets
De(c). Our plan is to use the “e of room” provided by the difference D¢(c) \ Dg(c)
in order to modify T into some T' with the same arrival and departure sets as
T, but for which also T’(ﬁé (¢)) = A%(0c(c)) holds. In this section, we describe
two abstract modifications of dissipative transformations, and the approximation
strategy outlined above will later be implemented in Section [9.4}

Since we are about to consider arrival and departure sets of different transfor-
mations, we use the notation A'C[U] to denote the positive arrival set constructed
for a transformation U; likewise for negative arrival and departure sets, etc.

LEMMA 9.12. Let ¢ and ¢' be measure-preserving transformations on X subject
to the following conditions:

(1) supp(¢) € Dc, supp(¢') € Ae;
(2) ¢(Dc) = D¢, $(Dc) = De, and ¢'(Ac) = Ac, ¢'(Ac) = Ac;
(3) xEcp(x) and xEc¢'(x) for all x € suppT.
The transformation Uz = ¢'T¢(x) is monotone, Uz = Tx for all © & Dc, and the
sets D¢, Ac remain the same:
X[u)=X X[U] =X,
DelU] = De De[U] = De,
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Moreover, the integral of lengths of “departing arcs” remains unchanged:

lpuldp = | |pr|du,

D¢ D¢

and the following estimate on [ D(Tx,Uzx)du(x) is available:

/INMJMMM@§2/Mﬂ@MM@
X D¢

//////////

ac(c)
A0 | Petoeto)
X NN . Iy
¢’ ¢

FIGURE 9.2. The transformation U = ¢'T'¢ defined in Lemma

PrROOF. Figure illustrates the definition of the transformation U. Equality
of the arrival and departure sets is straightforward to verify. Note that ¢(D¢(c)) =
De(c) for all ¢ € C, and therefore [ Be Podp=0. In fact, the following four integrals
vanish:

(9.3) /Awdu:/ep¢du=/ﬂp¢'du=/kp¢/du=0~
D¢ Dc Ac AC

Observe that py is positive on ﬁc and negative on DC, thus

lpu|dp = /ﬁp(zﬂw du — ﬁ Py T dpt
De¢ De De.

—éﬁw—@gwmww—[y@wmwm

Z/qp¢dﬂ+/~pTdu+/~P¢'du
DC DC Ac
— [P du—/kad/i—/kp/du
/Dc¢ Dc Acd)

.+ Eq. (9.3) :/apTdu*/k PTdM:/ lpr|dp.
De D, De
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Finally, note that for any « € D¢, the arc from x to Tz intersects the arc from
T=1¢'Tp(x) to ¢'T'p(x) (both arcs go over the same point of C), and therefore

D(Tz,Uz) < |pr(z)| + |lpr (T ¢'To(x))!.

Integration over D¢ yields

/X D(Tz,Uz)dp(z) = [ D(Tw,Uz)du(z) <2 / pr(@)|du(z). O

Dc Dc

LEMMA 9.13. Let T € [R ~ X|; be a monotone transformation, let F C D¢
be such that XC(F) = X¢(F) for all ¢ € C and the function C > ¢+ M\C(F) is E-
invariant (i.e., XS(F) = A\ (F) whenever ¢ and ¢ belong to the same orbit of the
flow). Let Z C Ac be the arrival subset that corresponds to F, i.e., Z = T(F).

Let 9 : F—Z and P F — 7 be any measure-preserving transformations such that
Y(x)Ecx and V' (z)Ecx for all x in the corresponding domains. Define V : X — X
by the following formula:

Y(z) ifzeF,
Ve = {9y (x) ifreF,
Tx otherwise.

The transformation V' is a measure-preserving automorphism from the full group
R~ X] and Va =Tx for all x € F. The integral of distances D(Tz, V) can be
estimated as follows:

/ D(Tz, Ve du(x) < 2 | |pr(z)| duz).
X Dec

The following figure illustrates the notions of Lemma [9.13

FIGURE 9.3. The transformation V defined in Lemma

PROOF. It is straightforward to verify that V is a measure-preserving transfor-
mation. For the integral inequality note that for any « € F' one has

D(Tx,Va) < |pr(z)| + |pr(T~ )],

and therefore

[ D va)du@) < [ prldut [ lorlan= /|pT\du</|pT|du

A similar inequality holds for |- F d(Tz,Vz)du, and the lemma follows. O
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9.4. Periodic approximations

We now have all the ingredients necessary to prove that monotone transforma-
tions can be approximated by periodic automorphisms. Our arguments follow the
approach outlined at the beginning of Section [9.3

In the following lemma, we assume that the Lebesgue measure of those = € X
that jump over any given ¢ € C is bounded from above by some 3, and that most of
such jumps — of measure at least v — are between adjacent Ec-classes. We are
going to construct a periodic approximation P of the transformation T with an
explicit bound on [y D(Tx, Px)du(z), which can be made small for a sufficiently
sparse cross-section C. When the flow is ergodic, this lemma alone suffices to
conclude that T' € D([R ~ X];). Theorem builds upon Lemma and treats
the general case.

LEMMA 9.14. Let T € [R ~ X |1 be a monotone transformation, let K > 0 be
a positive real, and let J = {x € suppT : |pr(z)| > K}. Let C be a cross-section
such that gape(c) > K for all c € C. Let 0 <y < B be reals such that for all c € C:

M ({z e X:z< oc(c) < T, TxEcoc(c)}) > 7,

M ({z e X:Tr<c< IvTxECUEI(C)}) >,
A{z € X r< oc(c) <Tx}) < B.
A({xGX:Tx<c§z})<ﬂ.

There exists a periodic transformation P € [R ~ X1y such that supp P C supp T
and

p(supp T').

K(8 —
[ p@s ) p) <5 [ Jorldn+ [ Jorlan+ FE=2
X Dc J v
PRrROOF. Let D¢ and A¢ be the departure and the arrival sets of T'. Figure
depicts the arrival A¢(c) and the departure D¢(c) sets for an element ¢ of the
cross-section C. Note that preimages T~ (A¢(c)) may come from different (possibly,

infinitely many) F¢-equivalence classes; likewise, images T(ﬁc (¢)) of the departure
set may visit several E¢-equivalence classes.

c oc(c)
- TC
X . . 2000000 @i  Em—— 22 EERERREEE b
~_ S~ 7
S S~
Ac(e) De(e)

FIGURE 9.4. The arrival A¢(c) and the departure De(c) sets for
some ¢ € C.

Set £(c) = v to be the constant function; in view of the assumptions on v, we
may apply Lemma m to get positive and negative &-copious arrival sets A% C A,

— —

;1; C Ac, as well as the corresponding departure sets 55 = 1¢(Ag) and D; = Tc(;l;)
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Set AS = A% U A and D = Dy L Dg. We have A(A%(c)) = 2y = A(Dg(c)) for all
ceC. Let

A = {x cAc:T™ acEcac me(x }U {a: cAc:T™ YeEcoe(me(x ))}

D¢ = {x € De : TxEcoc(me(x } U {IL‘ € D¢ TxEco, Yme(x ))}
be the set of arcs that jump from/to the next Ec-equivalence class. By the assump-

tions of the lemma, we have A(Dg(c)) >~ and A(A%(¢)) > v for all ¢ € C. Let ¢ be
any measure-preserving transformation such that:

e ¢ is supported on Dg;
e ¢(D¢) = D¢ and ¢(D¢) = De;
o ¢(z)Ecx for all z € X;

and moreover
(9.4) 4(DY) C D¢.
Select a transformation ¢’ such that

e ¢ is supported on Ac;
° qﬁ’(Ac) = Ac and ¢/(AC) = Ac;
o ¢'(x)Eca for all x € X;

and moreover
(9.5) ¢'(Top(D2)) = Ag.

Figure illustrates these maps. Note that while in general 7¢ (A'O (c)) # De(e),

one has 7¢ (/T' () = D*(c) for all ¢ € C by the definition of the &-copious departure
set.

— TC —

Az (c) Dg(c)
X enenennnnnes ® i , S o
\_/v \‘>_/¢ d)\\_’x\/v
- NI
Ag(c) D¢(c)

FIGURE 9.5. Automorphism ¢ maps Dg(c) into Dg(c) and (¢')~*
sends AZ(c) into Ag(c).

Let U be the transformation obtained by applying Lemma to T, ¢ and ¢'.
The automorphism U satisfies U(ﬁé(c)) = fl}';(oc(c)) and U(Dg(c)) = Ac(agl(c))
for all ¢ € C. Choose a measure-preserving transformation P 55 — 542 such that

zEcy(x) for all z in the domain of 1. Set ¢’ =75 ' o 1/} torgt: DE — /I& Let V
be the transformation that is produced by Lemma applied to U, ¥, and 9’ (see
Figure . Finally, set P: X — X to be

Py — Ve ifze [DE]EW
T otherwise.

We claim that P satisfies the conclusions of the lemma. It is periodic, since the
transformation 1’ orcotpo7e is the identity map and supp P C supp T by construction.
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&(o) e De(c)
— [ N—
X 005005050000 @I it e il
|
c \¢’—Tglo¢_107-c1 w‘v
.:)_( ° 4 A NN (]
S _
p= — o
De(c) = Az (c)

FicURE 9.6. Construction of the automorphism V from U, 1, and

Y
It remains to estimate [, D(Tx, Px)du(z).

/ D(Tz, Px) dp(x / D(Tz,Uz) dp(x / DWW, Va) du(x)

+ / D(Vz, Pz)du(z)
X
< [Estimates of Lemma [0.12] and Lemma [0.13]

prldn+ [ DV, Po)duta).
D¢

We concentrate on estimating [, D(Vx, Px)du(z). Recall that Tz = Uz = Vz for

all = & De, hence pr(z) = py(z) for 2 & De. Set ¥ = (X UX)\ [D¢]g, and note
that Vo = Uz for 2 € U, and therefore using the conclusion of Lemma [0.12| we have

(9.6) / Ipvldu=/ IPU\dué/ IpUldu=/ lpr| dps.
Denv Denv D¢ D¢

The integral [, D(Vz, Px)dpu(z) can now be estimated as follows.

/ D(Vx, Px)du(x / lov|du

S/ Ipvldu+/ lpv | dp
‘P\Dc Denv

+Tx =Vz for x & D¢ and Eq. S/ |pT|du+/ lor| du-
W\ Dc

Dc
Finally, we consider the integral fq,\ De |or| dp and partition its domain ¥\ D¢ as
(JN(T\ De))U ((T\ De) \ J), which yields

/ IPT\dué/lpTldwKu(‘P)
W\ D¢ J

KB -~
< / lpr| dp+ (V)u(supp 1),
J
where the last inequality follows from Lemma with § =1 — /3. Combining all
the inequalities together, we get

/ D(Tz, Pe) du(z) < 5 / lprldu + / lprl di +
X De J

Wu(supp T). O
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Lemmal9.14]allows us to approximate with a periodic transformation a monotone
T for which the Lebesgue measure of points jumping over any given ¢ € X is roughly
constant across orbits. To deal with the general case, we simply need to split the
phase space X into countably many segments invariant under the flow, and apply
Lemmal[9.14) on each of them separately. Small care needs to be taken to ensure that
values (3 —)/~, which appear in the formulation of Lemma [9.14] remain uniformly
small across the partition of X. Details are presented in the following theorem.

THEOREM 9.15. Let T € [R ~ X |1 be a monotone transformation that belongs
to the kernel of the index map, hence

AM{zesuppT :z<c<Tz})=A{yesuppT : Ty <c<y})
for almost all ¢ € X. For any € > 0 there exists a periodic transformation
P e [R~ Xy such that supp P C suppT and [, D(Tz, Px)du(z) < e.
PROOF. Let K. > 1 be such that for the set
Je={z €suppT : |pr(z)| = K}
one has [ 5. lpr|dp < €/18. Pick a cross-section C with gaps so large that
2K? /gap(c) < /15
for all ¢ € C, which ensures
(9.7) K. - u(De\ Jo) <¢€/15.

Note also that Eq. holds for any cross-section C’ C C, since D¢r € D¢ and
gape: (c) > gape(c) for all ¢ € C'.

For any positive real a@ > 0 there exists a positive 6(«) = § > 0 so small that
0 < aand 2§/(a —0) < €¢/3K.. We may therefore pick countably many positive
reals a,, > 0, n > 1, such that R>% =, (e — 6,/2, o + 6,/2) and

( 20, ) €
oy, — Oy, 3K,
Define intervals I, = (ap, — 6,/2, a0y + 0,/2), n > 1.

Let ¢ : C — RZ° be the map that measures the set of forward arcs over its
argument:

(9.8) Vn > 1.

((c):)\({:ve)z:x<c§Tx}).

Set C; = ¢~*(I1) and construct inductively C, = ¢ (1,) \ [Uj<p Ck] 5- Sets Cy, are
pairwise disjoint, and moreover, —cy Ecs for all ¢; € Cy,, c2 € Cp,, N1 # na. Let
Xn : Cn — N, n > 1, be the function defined by

xn(c) = min{m eN:
M{z € X:2<c<Tx,D(x,c) <m,D(Tz,c) < m}) > ((c) — 5n/2}.

Set C), ; = x,, (1) and define inductively Cy, ., = x (M) \ [Upcrm Chrl - Let Xpm
denote the saturated set [C;, ,,]g. Finally, for all m,n > 1, let Cp;m C Cj, ,,, be such
that gape m(c) > m for all ¢ € Cp . Sets Cp,m and X, ,, satisfy the following
conditions:

(1) Cypm is a cross-section for the restriction of the flow onto X, ;

(2) sets X, m, m,n > 1, are pairwise disjoint.
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() < Tz}) > ay — 6, for all

n,m

(3) ¢(c) € I, and XE({z € X :z < oc
c€Cpm.-

Let T, denote the restriction of T' onto X,, ,,. Apply Lemma to the
transformation T, ,,, cross-section Cy, ,,, which has gaps at least K., and § =
Ap + 6p, v = an — 0y, Let P, ,, be the resulting periodic transformation on X, ,,.
Set P = |, ,,, Pnm- We claim that P satisfies conclusions of the theorem. Set
¢ = |_| Cn m and note that C" C C, whence D¢ C De.

/ D(Tx, Px)du(x Z/ (T, m, Py ma) du(x)
" Lemma §5Z/ |pT|d,u+Z/ lor| dp
n,m Cn,m n,m JeNXn,m

+ ZKE(%)M(XW)

n,m

Eq. @8) <5 /D \pr| du + /J lorl d + (e/3)u(X)

s5/ \,oT\du+6/ lprl dyu+ ¢/3
DC\Js Je

*.» choice of K. < 5K (D¢ \ J.) +€/3+¢€/3

~Eq. (9.7) <e,

and the theorem follows. O

COROLLARY 9.16. Let R ~ X be a measure-preserving flow and T € [R ~ X |q
be a dissipative transformation. If Z(T) =0, then T € D([R ~ X]1).

Proor. By Corollary there is a monotone transformation U and a periodic
transformation P such that T'= U o P. Since P € D([R ~ X];) by Corollary
it remains to show that U belongs to the derived subgroup. The latter follows from

Theorem since Z(U) =Z(T) — Z(P) = 0. O



CHAPTER 10

Conclusions

Our objective in this last chapter is to draw several conclusions regarding the
structure of the L' full groups of measure-preserving flows. The analysis conducted
in Chapters [§ and [J] leads to the most technically challenging result of our work,
which is the following theorem.

THEOREM 10.1. Let F : R ~ X be a free measure-preserving flow on a standard
probability space. The kernel of the index map coincides with the closed derived
subgroup D([F]1).

PRrOOF. Inclusion D([F];1) C kerZ is automatic since the image of Z is abelian.
For the other direction, pick a transformation T' € ker Z and consider its Hopf’s
decomposition X = CLUD provided by Proposition[£.16l We have T' = TzoTp, where
Te € [F]i is conservative and Tp € [F|; is dissipative. According to Corollary
I(T¢) = 0 and Te € D([F]1), whence Z(Tp) = Z(T) — Z(T¢) = 0. Therefore,
the dissipative part T satisfies the assumptions of Corollary which yields
Tp € D([F1), and hence T' € D([F]1) as desired. O

10.1. Topological ranks of L' full groups

Empowered with the result above and Corollary we can estimate the
topological ranks of L' full groups of flows. We recall the following well-known
inequalities.

PROPOSITION 10.2. Let ¢ : G — H be a surjective continuous homomorphism
of Polish groups. The topological rank tk(G) satisfies

rk(H) < 1k(G) < rk(H) + rk(ker ¢).

ProposSITION 10.3. Let F : R ~ X be a free measure-preserving flow on a
standard probability space (X, p). The topological rank tk([F]1) is finite if and only
if the flow has finitely many ergodic components. Moreover, if F has exactly n
ergodic components then

n+1<rk([F]1) <n+3.

PROOF. Let £ be the space of probability invariant ergodic measures of the
flow, and let p be the probability measure on € such that pu = [, vdp(v) (see
Appendix |C.3]). Proposition shows that the index map Z : [F]; — LY(€,p) is
continuous and surjective. An application of Proposition yields
(10.1)  1k(LY(&,p)) < tk([F]1) < tk(LY(E,p)) + rk(ker T) = k(L' (&, p)) + 2.

where the last equality is based on Theorem and Corollary Since L(€,v)
is a Banach space, its topological rank is finite if and only if its dimension is finite,
which is equivalent to (£, p) being purely atomic with finitely many atoms. We have

79
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shown that rk([F];) is finite if and only if the flow has only finitely many ergodic
components. The moreover part of the proposition follows from the inequality ([10.1))
and the observation that rk(L!(€,p)) = dim(L(&,p)) + 1. O

As already mentioned in the introduction, we conjecture that the topological
rank completely remembers the number of ergodic components.

CONJECTURE 10.4. Let F be a measure-preserving flow. If it has exactly n
ergodic components, then tk([Fl1) =n+ 1.

Provided the conjecture holds, we have a priori no way of distinguishing L* full
groups of ergodic flows as topological groups. For Z-actions, it is a consequence of
Belinskaya’s theorem that there are many L' full groups. The next two sections are
devoted to analogues of her result for flows, yielding that there are many L' full
groups of free ergodic flows, although we don’t have a concrete way of distinguishing
them (we will discuss in the last section their geometry, which might help there).

10.2. Katznelson’s conjugation theorem

R. M. Belinskaja [Bel68| showed that if measure-preserving transformations
T,U € Aut(X, p) generate the same orbit equivalence relation, i.e., Rr = Ry,
and U € [T];, then T and U are conjugated. Y. Katznelson found a different
argument and isolated a sufficient condition for conjugacy of measure-preserving
transformations (see [CIMT22| Theorem A.1]). In the following, for T' € Aut(X, u),
v € X, and A C Z we let T4z denote the set {T"x : k € A}.

THEOREM 10.5 (Katznelson). Suppose T,U € Aut(X, u) are measure-preserving
transformations that generate the same orbit equivalence relation, Ry = Ry. If
the symmetric difference Tz A UNx is finite for almost all z, then T and U are
conjugated by an element from the full group [T] = [U].

The analog of this result for free measure-preserving flows will be proved shortly
in Theorem [10.9] But first we discuss an important application of Theorem [10.5
Consider a free measure-preserving flow F : R ~ X. Given a dissipative transfor-
mation T € [F] (in the sense of Definition [0.1)), Proposition implies that almost
every non-trivial T-orbit [z]z, is a discrete subset of [x]g unbounded both from
below and from above. The order induced on [z]r, by the flow may disagree with
the T-order of points. One may therefore define the F-reordering of T to be the
first return transformation 7 induced by the ordering of the flow on the orbits of T

Tr=z+min{r>0:z+7r € [z]r,} for x € supp T.

Note that 7" and T generate the same orbit equivalence relation, Rt = R.

If T belongs to the L' full group of the flow, either TNz A TNz or TNz A TNz
is finite, depending on whether lim,, p(x,T"x) = +oo or lim, p(z,T"z) = —o0
(cf. Corollary . Which symmetric difference is finite may depend on the point
x € X, and Theorem can be used to show that T" and its reordering T are flip
conjugated.

DEFINITION 10.6. Let (X7, 1) and (X2, p2) be standard probability spaces,
and let T; € Aut(X;, u;), i = 1,2. Measure-preserving transformations 7} and T
are flip conjugate if there exist an isomorphism of measure spaces S : X1 — X»
and measurable partitions X; = X; U X", X5 = X; U XS such that
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(1) S(Xy) =X, and S(X") = X
(2) X;, X are Ti-invariant and X5, X5 are Th-invariant;
(3) STy Ixs S7'=To Iy and STy [~ S7h=T5" [

Note that when one of the T;’s is ergodic, our definition of flip-conjugacy
coincides with the standard one, which requires X, or X;" to have full measure.

PROPOSITION 10.7. Any dissipative T' € [F]1 and its F-reordering T are flip
conjugated by an element from the full group [T] = [T'].

negative orbits as in Definition In particular, TNz ATNz and TNz AT Nz are
finite for x € X and x € X, respectively. Theorem implies that there exist

automorphisms S1 € [T [¢] and S; € [T FX] such that $17 [¢ S;' =T |5 and

ST f}-( S’{l =71 F}(' The transformation S given by

Proor. Consider the decoosition suppT = X U X into the positive and

Sz ifxe X ,
Sz ={Sz ifreX ,
x otherwise
belongs to the full group [T'] and witnesses flip conjugacy of T and T. O

The transformation conjugating 1" and U in Theorem can be written fairly
explicitly. This is done in terms of the function § defined as follows. Suppose (£, \)
is a (possibly infinite) measure space, and let A, B C 2 be measurable sets such that
AMA A B) < +00. We set 6(A,B) = A(A\ B) — A(B\ A). This function satisfies a
few properties which the reader can easily verify.

PROPOSITION 10.8. Suppose (2, \) is a measure space. For all A,B,C,a,C Q
such that A(A A B),\(BAC),\AA C),\(a) < 400, the following holds:
(1) 6(A,C) =6(A, B) +4(B,C);
(2) 6(A,A) =0 and 6(A,B) = —6(B, A);
(3) 6(AAa,B)=46(A,B)+ (Aa) — 2\ (anN A)).

Any orbit of a measure-preserving transformation can be endowed with a
counting measure. Given T and U as in the statement of Theorem [10.5] set
7(z) = 6(UNz, TNz) and define Sz = UT™®)z. One can verify that S € [U] = [T]
and STS~! = U (further details can be found in [CJMT22, Theorem A.1]).

Let now /7 and F> be measure-preserving flows on a standard probability space
(X, u); we denote the actions of r € R upon z € X by x 41 r and x 44 7, respectively.
Suppose that their full groups coincide, [F;] = [F2], and so the flows share the
same orbits, Rr, = Rx,. For z € X, let s;(z) = 2 +; [0,00), i = 1,2, denote the
“right half-orbit” of x. A natural analog of the condition |TNx A UNx| < oo from
Theorem would be to require finiteness of the Lebesgue measure of s1(z) A so(x)
for all z € X. This condition alone, however, is not sufficient for conjugacy of F;
and Fo.

Each flow induces a copy of the Lebesgue measure onto orbits via

Aig(A)=A{reR:z+;,r € A}).

Since we assume [Fi| = [F2], and so Fo C [Fi], A1, is a translation invariant
measure relative to the action of 73, and therefore must differ from Ay, by a
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constant: there is an orbit invariant measurable function ¢ : X — R>? such that
A2z = (@)A1 5. Any element in [Fi] = [Fa] preserves \; o, ¢ = 1,2, and therefore
cannot conjugate Fi into F» unless c¢(x) is constantly equal to 1.

When the flows are ergodic, ¢(z) = ¢ is a constant, and one may renormalize
the flows without changing the full groups. Let F3 be the rescaling of F» given by
x+47r = x4+ cr. It is straightforward to check that Xy ,(A) = ¢ ' Ay 2(4) = A1 2(A4)
and flows F; and F induce the same measure onto orbits.

For flows that do induce the same measures on the orbits, finiteness of the
measure s1(x) A so(x) for all z € X is indeed sufficient to conclude conjugacy of
the flows.

THEOREM 10.9. Let F;, i = 1,2, be free measure-preserving flows that share
the same orbits, Rr, = Rx,, and induce the same measures (A;)zex onto orbit.
If Mp(s1(x) A sa(x)) < +oo for x € X, then the flows are conjugate by a measure-
preserving transformation S € [Fi].

PROOF. Letn : X xR — R be the F, Fo-cocycle defined by 491 = x+1n(z, 7).
Since F; and F; induce the same measure on the orbits, n(x,-) : R — R is a Lebesgue
measure-preserving automorphism:

An(z, A)) = M ({z +1n(z,7) : r € A})
=X {z42r:re A}) = A(A).
For z € X and r € RU {400} let
W= {75 iz
In particular, s;(z) = $; +o0(z). Note that
s51(z +27) = 51(2) A 5102, (2),
so(x 42 1) = s2(x) A sg..(x).

Also, considering the cases r < 0 and r > 0 separately, one can easily verify that for
allre Randi=1,2

Xz (Sir(x)) = 2X; w(s2(2) N 82,0 (2)) = —1.

(10.2)

and, in particular,
A1,z (81, n(x (@) = 21 2 (51(2) N 81 (e, (7)) = —n(z,7),
A2,z (82,0()) — 2Xa 5 (s2(x) N 52, (x)) = —.
Put 7(z) = §(s1(x), s2(z)), then
T(x +27) =0(s1(x +2 1), 82(x +2 7))
" Eq. (10.2) = 0(s1(2) A 51,n(2m) (%), 82(2 +27))

“ Prop. [10.§ = 6(s1(2), s2(z +2 7))+
)\1,z(81,n(m,r) (7)) = 2M1,2(51(2) N 81 n(e,r) (7))

- Eq. - = d(s1(x), s2(x +2 1)) — n(z,r)

“ Prop. [I0-8 = —6(s2(z +2 1), s1(x)) — n(z,r) = d(s1(z), s2(x 42 7)) —
(A2,2 (82,0 (7)) = 2X2,2(52(2) N 52,0 (7)) — n(2, 1)

- Eq. =0(s1(x), s2(x)) — n(z,r) +r.

(10.3)
5
5

(10.4)
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The required transformation S : X — X is given by Sz = x 4+ 7(z).
S(x4ar)=(x42r)t17(@+27) = (x+1n(z,r)) +1 7(x +27)
Eq. (10.4) = 2 41 (n(z,r) + 7(z) — n(z,r) +r) = Sz +1 1.

Thus S conjugates F; and Fa. It therefore remains to check that S is a measure-
preserving bijection. First, note that Sz satisfies (s1(Sz), s2(x)) = 0. Indeed,
51(Sx) = s1(x) A 51,7(2)(x) (by the analog of Eq. (10.2))), and therefore

(10.5) 0(s1(Sx),s82(x)) =7(z) —7(x) =0

by Proposition [10.8
To show injectivity, suppose that Sz = Sy. In view of Eq. (10.5) and Proposi-
tion [10.8]
6(s2(x), s2(y)) = 0(s2(x), s1(Sx)) + 6(s1(Sy), s2(y)) = 0.

However, if y = & +2 r, then so(y) = s2(z) A s2,(x) and so 6(s2(x), s2(y)) = r. One
concludes that 7 = 0 and « = y. We have already established that S(z+2r) = Sz+47,
which shows that the range of S is orbit invariant, yielding surjectivity.

Finally, to show that S is measure-preserving, it suffices to check that S preserves
the Lebesgue measure A; , = A2, on all the orbits. To this end, let n’ : X x R — R
be the Fi-cocycle (i.e., x +1r = +2 n'(x,r)). For all 7’ € R, one has

Al,z(ssl,r’ (1’)) = Al,m({y +1 T(y) Yy e S1,r/ ({E)})
=M {@z+1r) 17 +17):0<r <7}
=A{r+(r(x) —r+n'(z,r): 0<r<r'})
=A{n'(x,7): 0<r <7r'})=An(z,[0,7"))) =1,
hence S € Aut(X, i) is the required conjugation between F; and Fo. O

In the Z case, the above result is the key to Belinskaja’s flip conjugacy result for
L' orbit equivalence. Unfortunately, here we don’t know if it can be useful towards
proving an analogous result. In the next section, we nevertheless obtain a weaker
result which yields that there are many L' full groups. We leave the following
question open.

QUESTION 10.10. Given two ergodic flows with equal L' full groups, do they
have to satisfy the hypothesis of the above theorem after appropriate rescaling?

10.3. L! orbit equivalence implies flip Kakutani equivalence

A measure-preserving action of a compactly generated locally compact Polish
group can always be twisted by a continuous automorphism of the group without
affecting the L' full group.

In the case of Z-actions, this takes a particularly simple form, since the only
non-trivial automorphism of Z is given by n — —n. It follows from the results
of R. M. Belinskaja [Bel68] that this is up to conjugacy the only way to get an
L' orbit equivalence for ergodic Z-actions [LM18], Theorem 4.2]: if Ty, Ty are two
ergodic measure-preserving transformations which are L' orbit equivalent, then they
are flip-conjugate: T is conjugate to either T or T, 1

As mentioned before, we do not know whether a variant of such rigidity holds
when we replace Z by R (see Question below), but, as shown in Theorem
L! orbit equivalent free measure-preserving flows must at least be flip Kakutani
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equivalent. In particular, there are uncountably many L' full groups of free ergodic
flows up to abstract group isomorphism.

Let us first define the notion of (flip) Kakutani equivalence of flows. For the
main results about this concept, the reader may consults [Kat75[Kat77], where it is
called monotone equivalence of flows. Given a measure-preserving automorphism
T € Aut(Z,v) and a positive integrable function f € L*(Z,v), one can define the
so-called suspension flow or flow under a function of 7" on the space

X=A(zt):z€Z, 0<t< f(2)}
under the graph of f. For r > 0, the action (z,t) + r is given by

k—1
(z,t) +r= (Tkz,t—i— r— Z f(T'z))
=0

where k > 0 is defined uniquely by the condition Zf;ol (Tiz) < t+r < Zf:o f(Tiz2);
similarly for » < 0 the action is

k
(z.t)+r=(TF2t+7r+ ) f(T72)),
=1

k .
where k > 0 satisfies 0 <t +7+ > f(T7%2) < f(T~*2). Such a flow preserves the
i=1
restriction onto X of the product measure v x X\. The space

VXA
J, fdv

is a standard probability space. The automorphism 7' in the suspension flow
construction is called the base automorphism.

(X, p), where p = [x

DEFINITION 10.11. Two flows are (flip) Kakutani equivalent if they are
isomorphic to suspension flows over flip conjugate base automorphisms.

It is important to note that the construction of suspension flows can be reversed
through the use of cross—sectionsﬂ If we have a fixed free flow on (X, ) and C C X
is a co-compact cross-section which is U-lacunary where U is precompact, then there
is a unique probability measure v on C such that the map U xC - C+U C X
taking (t,c) to ¢+ t is measure-preserving (see e.g. [KPV 15| Prop. 4.3] for the
general construction). It is then clear that the first-return map o¢ : C — C is
measure-preserving, and our initial flow can be seen as the flow built under the gap
function gap, with base transformation o¢.

We need the following important result, which is due to D. Rudolph [Rud76|.
Keeping in mind the previous paragraph, it can be reformulated as the fact that
every measure-preserving flow is conjugate to a suspension flow over a two-valued
function.

THEOREM 10.12 (Rudolph). Let F be a free measure-preserving flow on a
standard probability space (X, p), let to € R\ Q, then F admits a cross-section
whose gap function only takes the values 1 and ty almost surely.

Un full generality, the definition of a cross-section should actually be relaxed, replacing
lacunarity by discreteness in each orbit, and only requiring the gap function of the cross-section to
be integrable.
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REMARK 10.13. The second named author has obtained a generalization of this
to the purely Borel context, see [Slul9).

THEOREM 10.14. Let F,F’ be free measure-preserving flows on (X, u) that
share the same orbits, Rx = Rx. If F' < [F|1, then F and F' are flip Kakutani
equivalent.

ProOOF. We denote the flow F using our usual notation, (z,t) — = +¢. As
explained right after Definition it suffices to find cross-sections for F and F’
such that the corresponding first return automorphisms are flip conjugated.

Pick Borel realizations of the flows and let C C X be a Borel cross-section for
F such that gap.(c) € {1,%} for all ¢ € C, as provided by Theorem Define
the automorphism 7': X — X by

T oc(c)+a ifz=c+ afor some ceC, ac|0,1],
xr =
T otherwise.

The transformation 7T is obtained by gluing together the identity map, z +— = + 1
and x — x +tg, and since all these belong to [F];, which is finitely full, we have that
T € [F]1 as well. Note that T is dissipative and is therefore flip conjugated to its
F'-reordering T by Proposition In other words, there is a T-invariant Borel set
Z C X of full measure, (Z) = 1, and a T-invariant Borel partition Z = Z+ U Z~
such that T [z+ is conjugated to Ty and T [4- is conjugated to T-11,-.

Let v be the measure on C given for a Borel A C C by v(A) = u(A +1[0,1)).
The measure i [¢[o,1) is naturally isomorphic to (v x A) [¢4jo,1), where A is the
Lebesgue measure on [0, 1], and therefore we have

VXA e, ) €Cx [0,1) c+ac Z
By Fubini’s theorem, this is equivalent to
Ve 0,1)VWeel (c+ac ).

Therefore there exists some ag € [0,1) such that v({c € C:c+ ap € Z}) = 1. Note
that T' [¢c4q, is the first return map on C + ag in the order of the flow F, whereas
T [ct+ao 18 the first return map in the order induced on the orbits by F’. Since
T [c+a, and T [cta, are flip conjugated, the flows are flip Kakutani equivalent. [

Theorem [10.14] has the following straightforward consequences.

COROLLARY 10.15. If two free ergodic measure-preserving flows are L' orbit
equivalent, then they are also flip Kakutani equivalent.

PRrROOF. This now follows from the definition of L' orbit equivalence, see Defi-
nition [£.19) and the paragraph thereafter. O

COROLLARY 10.16. If two free ergodic measure-preserving flows have abstractly
isomorphic L' full groups, then they are also flip Kakutani equivalent.

PRrOOF. We have seen in Proposition that isomorphism of L! full groups
of ergodic flows implies L' orbit equivalence, so the result follows from the previous
corollary. O

Kakutani equivalence is a highly non-trivial equivalence relation (see, for instance,
[ORW82] or [GK 21, Kun23|). It seems likely, however, that L full groups of flows
contain even more information about the action. The only continuous automorphisms
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of R are multiplications by nonzero scalars, and we ask whether isomorphism of L!
full groups necessarily recovers the action up to such an automorphism.

QUESTION 10.17. Let F1 and Fo be free ergodic measure-preserving flows with
isomorphic L' full groups. Is it true that there is o € R* such that Fi and Fa 0omqg
are isomorphic, where my, denotes the multiplication by «?

Note that a positive answer to Question [10.10] would imply a positive answer to
the above question.

10.4. Maximality of the L! norm and geometry

In this last section, we show that the L! norm is maximal on L! full groups
of flows. In particular, it defines their quasi-isometry type. Exploring this quasi-
isometry type further thus might lead to topological group invariants which distin-
guish some ergodic flows.

THEOREM 10.18. Let F be a free measure-preserving flow. The L norm on [F|;
is mazximal.

PRrOOF. We have already shown that the L' norm on the derived L! full
group is maximal (see Theorem [5.5). Denote by (£, p) the space of F-invariant
ergodic probability measures, where p is the probability measure arising from the
disintegration of u which we write as x — v, (see Section . The derived L! full
group is equal to the kernel of the surjective index map Z : [F];] — L'(&,R) and
the quotient norm on [F];/ker I is equal to the L! norm on L!(€, p) by Proposition
The latter norm is maximal, as is any Banach space norm.

Given a function f € L*(&,p), let Uy € [F]y be given by U(x) = z+ f(v;). The
cocycle py, (x) = f(v,) is constant on each ergodic component and [|Uy |y = || f]|1.
Furthermore, Z(Uy) = f. We show that || - || is both large-scale geodesic and coarsely

proper (see Appendix and Proposition in particular).

Any T € [F];1 can be written as T = (TUI_(;))UZ(T), where the transforma-
tion TUI_(lT) € kerZ = D([F]1), and [|[Uzylli < ||T]]1. In particular, we have
ITU 4 I < 20T

Since the L' norm is maximal on D([F]1), it is large-scale geodesic. In fact,
Proposition [3.:24] establishes that it is large-scale geodesic with constant K = 2.
We may therefore express TUz_(lT) as a product Vi ---V,, of elements V; € D([F]1),

where each V; has norm at most K and

Y Wil < KITUZ Ih < 2K T
i=1
The transformation Uz(r) can, for any m > 1, also be expressed as a product
Urry = Uzcryjm - - Uz(ry /m = UZ() jm-

Taking m sufficiently large, we can ensure that [|Uz(ry/ml1 = [|IZ(T)/m|; < K.
Therefore, T'= (V1 --- Vo) (Uz(ry /m - - - Uz(1) ym ), and

n m
S Wil + D 1Uzrymll < 2K + Uzl < 3K T2

i=1 j=1

We conclude that the norm || - || on [F]; is large-scale geodesic with K/ = 3K = 6.
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It remains to prove coarse properness. Let € > 0 and R > 0 be positive reals.
By Theorem there is n € N so large that every element in the derived L' full
group of norm at most 2R is a product of n elements of norm at most €. Let N be
any integer greater than R/e. We argue that every element of [F]; of norm at most
R is a product of 2n + N elements of norm at most e.

Indeed, if T = (TUz_(lT))UI(T) has norm at most R, then

ITUz iyl < 21T, < 2R,

and TUz_(lT) can therefore by written as a product of n elements of D([F'];) each

of norm < e. Also, Uz(1) = UﬁT)/N and ||Uz¢ry/n|l1 < € by the choice of N. The
conclusion follows. O

REMARK 10.19. While the proposition above states that L' full groups of flows
are quite big, one can use Proposition to show that they satisfy the Haagerup
property. In other words, such groups admit a coarsely proper affine action on a
Hilbert space (namely, the affine Hilbert space xg>o + L?(R, M)).






APPENDIX A

Normed groups

We chose to present our work in the framework of groups equipped with
compatible norms rather than metrics. These two frameworks are equivalent, but
the former has some stylistic advantages, in our opinion. In Appendix [A] we remind
the reader the concept of a norm on a group (Section and state C. Rosendal’s
results on maximal norms (Section .

A.1. Norms on groups

DEFINITION A.1. A norm on a group G is a map ||-|| : G — R=Y such that for
all g,h € G
(1) |lgll =0 if and only if g = €;
(2) llgll = llg~":
@) llghll < llgll + [1]]-
If G is moreover a topological group, a norm ||-|| on G is called compatible if the
balls {g € G : ||g|]| < r}, r > 0, form a basis of neighborhoods of the identity.

There is a correspondence between (compatible) left-invariant metrics on a
group and (compatible) norms on it. Indeed, given a left-invariant metric d on G,
the function ||g|| = d(e, g) is a norm. Conversely, from a norm ||-|| one can recover the
left-invariant metric d via d(g, h) = ||g~1h||. Analogously, there is a correspondence
between norms and right invariant metrics given by d(g, h) = ||hg™!|.

The language of group norms thus contains the same information as the formal-
ism of left-invariant (or right-invariant) metrics, but it has the stylistic advantage
of removing the need of making a choice between the invariant side, when such a
choice is immaterial.

REMARK A.2. Note, however, that there are metrics that are neither left-
nor right-invariant, which nonetheless induce a group norm via the same formula
llgll = d(g,e). Consider for example a Polish group G with a compatible left-invariant
metric d’ on it. If G is not a CLI group, the metric d’ is not complete, but the

metric ; L
d(f,9)+d(f~" 9~
d(f.g) = PLIHLY o)
is complete. Since d(g,e) = d'(g,e), we see that d induces the same norm ||-|| as

does the left-invariant metric d'.
There is a canonical way to push a norm onto a factor group.

PROPOSITION A.3 (see |[Fre04, Thm. 2.2.10]). Let (G, ||-||) be a Polish normed
group, and let H < G be a closed normal subgroup of G. The function

lgH |/ = inf{||gh|| - h € H}

89
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is a norm on G/H which is compatible with the quotient topology. In particular,
(G/H, ||-|5/H) is a Polish normed group.

DEFINITION A.4. A compatible norm ||-|| on a locally compact Polish group G
is proper if all balls {g € G : ||g|| < r} are compact.

R. A. Struble [Str74| showed that all locally compact Polish groups admit a
compatible proper norm.

A.2. Maximal norms

As was noted in Lemma m quasi-isometric norms yield the same L' full
groups. C. Rosendal identified the class of Polish groups that admit maximal norms,
which are unique up to quasi-isometry. In this section, we state some of results
from C. Rosendal’s treatise [Ros22], which are relevant to our work. For reader’s
convenience, we formulate the following definitions and propositions in the language
of group norms as opposed to left-invariant metrics or écartes, as in the original
reference.

DEFINITION A.5 ( [Ros22| Def. 2.68]). A compatible norm ||-|| on a Polish
group G is said to be maximal if for any compatible norm ||-||" there is a constant
C > 0 such that ||g]|’ < C|lg|| + C for all g € G.

DEFINITION A.6 ( [Ros22, Prop. 2.15]). Let G be a Polish group. A subset
A C G is coarsely bounded if for every continuous isometric action of G on a
metric space (M, dys), the set A -m is bounded for all m € M, i.e., there is K >0
such that das(a; -m,as-m) < K for all a1, as € A. A Polish group G is boundedly
generated if it is generated by a coarsely bounded set.

THEOREM A.7 ( |[Ros22, Thm. 2.73]). A Polish group admits a mazimal
compatible norm if and only if it is boundedly generated.

The following characterization is available to establish maximality of a given
norm.

DEFINITION A.8 ( |[Ros22| Def. 2.62]). A norm ||-|| on a group G is called large-
scale geodesic if there is K > 0 such that for any g € G, there are g1,...,9, € G
of norm ||g;|| < K, 1 <i < n, such that g = g1 - - - g, and

n
> lgill < K gl
i=1

DEFINITION A.9 ( [Ros22, Lem. 2.39(2) and Prop. 2.7(5)]). A compatible norm
Il on a topological group G is called coarsely proper if for every € > 0 and every
R > 0, there are a finite subset F' C G and n € N such that every element g € G of
norm at most R can be written as a product

g = flgl"'fngna
where f1,..., fn, € F and each g; has norm at most e.

PrOPOSITION A.10 ( [Ros22| Prop. 2.72]). A compatible norm ||-|| on a Polish
group G is mazximal if and only if it is both large-scale geodesic and coarsely proper.



APPENDIX B

Hopf decomposition

An important tool in the theory of non-singular transformations on o-finite
measure spaces is the Hopf decomposition, which partitions the phase space into
the so-called dissipative and recurrent parts reflecting different dynamics of the
transformation. In this appendix, we recall the relevant definitions and indicate
what happens for measure-preserving transformations of a o-finite space. The reader
may consult [Kre85| Sec. 1.3] for further details on the following definitions.

DEFINITION B.1. Let S be a non-singular transformation of a o-finite measure
space (2, ). A measurable set A C Q is said to be:

e wandering if AN S*(A) =g for all k > 1;

e recurrent if A C |J,, S¥(4);

e infinitely recurrent if A C (), o, Uys, S¥(4).
The inclusions above are understood to hold up to a null set. The transformation S
is:
dissipative if the phase space () is a countable union of wandering sets;
conservative if there are no wandering sets of positive measure;
recurrent if every set of positive measure is recurrent;
infinitely recurrent if every set of positive measure is infinitely recurrent.

It turns out that the properties of being conservative, recurrent, and infinitely
recurrent are all mutually equivalent.

PROPOSITION B.2. Let S be a non-singular transformation of a o-finite measure
space (Q, X). The following are equivalent:

(1) S is conservative;
(2) S is recurrent;
(3) S is infinitely recurrent.

Among the properties introduced in Definition [B.I], only recurrence and dissi-
pativity are therefore different. In fact, any non-singular transformation admits a
canonical decomposition, known as the Hopf decomposition, into these two types of
action.

ProposITION B.3 (Hopf decomposition). Let S be a non-singular transfor-
mation of a o-finite measure space (2, \). There exists an S-invariant partition
Q = DUC such that S |p is dissipative and S [¢ is recurrent (equivalently,

conservative). Moreover, if Q@ = D' UC’ is another partition with this property
then A(DAD') =0 and AM(CAC") = 0.

We also note the following consequence of dissipativity in case the measure is
preserved.
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PROPOSITION B.4. Let S be a measure-preserving transformation of a o-finite
measure space (Q,A) and let Q@ = D U C be its Hopf decomposition. For every
set A C Q of finite measure, almost every point in D eventually escapes A:

YAz € D3N ¥n > N T"z ¢ A.

PROOF. We may as well assume D = Q. Let A C Q2 have finite measure. Let
@ be a wandering set whose translates cover €. Consider the map ® : Q x Z — Q
which maps (z,n) to T™(x), and observe that ® is measure-preserving if we endow
@ %X Z with the product of the measure induced by A on @ and the counting measure
on Z.

So if there is a positive measure set of z € @ such that S™(z) € A for infinitely
many n € N, by Fubini’s theorem we would have that A has infinite measure, a
contradiction. The same conclusion is true if we replace ) by any of its S-translates,
and since these translates cover €2 the proof is finished. ([



APPENDIX C

Actions of locally compact Polish groups

In this chapter of the appendix, we collect some well-known facts related to
actions of locally compact Polish groups. This exposition is provided for reader’s
convenience and completeness. We recall that by a result of G. W. Mackey [Mac62|,
any Boolean measure-preserving action of a locally compact Polish group can be
realized as a spatial Borel action, so we may switch to pointwise formulations,
whenever convenient for the exposition.

C.1. Disintegration of measure

Let R be a smooth measurable equivalence relation on a standard Lebesgue
space (X, u), and let 7 : X — Y be a measurable reduction to the identity relation
on some standard Lebesgue space (Y, v), m(x) = w(y) if and only if 2Ry. Suppose
that v is a o-finite measure on Y that is equivalent to the push-forward m.pu. A
disintegration of y relative to (m,v) is a collection of measures (iy),ecy on X such
that for all Borel sets A C X

(1) py(X \ 7 (y)) =0 for v-almost all y € Y;
(2) the map Y 3y +— p1,(A) € R is measurable;
(8) 1(A) = [y 1y (A) dv(y).

A theorem of D. Maharam [Mah50| asserts that 4 can be disintegrated over
any (m,v) as above. In fact, existence of a disintegration can be proved in a setup
considerably more general (see, for example, D. H. Fremlin [Fre06, Thm. 4521]),
but in the framework of standard Lebesgue spaces, disintegration is essentially
unique. While the context of our work is purely ergodic theoretical, we note that
the disintegration result holds in the descriptive set theoretical setting as well, as
discussed in [Mah84| and [GM&89|. Without striving for generality, we formulate
here a specific version, which suits our needs.

THEOREM C.1 (Disintegration of Measure). Let (X, u) be a standard Lebesgue
space, (Y, v) be a o-finite standard Lebesque space, and let w: X — 'Y be a measurable
function. If m.p is equivalent to v, then there exists a disintegration (ty)yey of p
over (m,v). Moreover, such a disintegration is essentially unique in the sense that
if (uy)yey is another disintegration, then ju, = p, for v-almost all y € Y.

REMARK C.2. It is more common to formulate the disintegration theorem with
the assumption that 7, u = v, when one can additionally ensure that p, (X) = p(X)
for v-almost all y. Weakening the equality m.u = v to mere equivalence is a
simple consequence, for if (u,)yey is a disintegration of p over (m,m.u), then

(d’;—;”(y) "“y)er is a disintegration of p over (m,v).

Let X, C X be the set of atoms of the disintegration, i.e., X, = {x € X :
ty(x) > 0 for some y € Y}, and let F' be the equivalence relation on X,, where two
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atoms within the same fiber are equivalent whenever they have the same measure:
r1 Fay if and only if fir(z,)(21) = fn(es)(72) and 7(z1) = 7(22). The equivalence
relation F' is measurable and has finite classes p-almost surely. Let X,,, n > 1, be
the union of F-equivalence classes of size exactly n, thus X, = | |,~; X,. Set also
Xo =X\ X, to be the atomless part of the disintegration and let R,, denote the
restriction of R onto X,,.

Consider the group [R] < Aut(X,u) of measure-preserving automorphisms
for which 2 RTx holds p-almost surely. Every T € [R] preserves v-almost all
measures L, since (Typy)yey is a disintegration of Tip = p, which has to coincide
with (uy)yey by uniqueness of the disintegration. In particular, the partition
X = |,eny Xn is invariant under the full group [R], and for any T' € [R] the
restriction T [x, € [R,] for every n € N. Conversely, for a sequence T, € [R,],
n €N, one has T = |, T,, € [R]. We therefore have an isomorphism of (abstract)
groups [R] 2 [T, cx[Ro].

The groups [R,] can be described quite explicitly. First, let us consider the case
n > 1, thus X,, C X,. All equivalence classes of the restriction of F' onto X,, have size
n. Let Y, C X,, be a measurable transversal, i.e., a measurable set intersecting every
F-class in a single point, and let v,, = p1 |y, . Every T € [R,,] produces a permutation
of p-almost every F-class, so we can view it as an element of L(Y,,,v,,&,,), where
G, is the group of permutations of an n-element set. This identification works in
both directions and produces an isomorphism [R,,] 22 LO(Y,,, v, &,,). Note also that
all v, are atomless if so is u. We allow for u(X,) = 0, in which case L°(Y,,, v, &,,)
is the trivial group.

Let us now go back to the equivalence relation Ry = R N Xy X Xy, and
recall that measures p, [x, are atomless. Let Yy = {y : p,(Xo) > 0} be the
encoding of fibers with non-trivial atomless components and put vp = v [y,. In
particular, for every y € Yy the space (X, fty) is isomorphic to the interval [0, 1, (Xo)]
endowed with the Lebesgue measure. In fact, one can select such isomorphisms in a
measurable way across all y € Yy. More precisely, there is a measurable isomorphism
Y Xo—={(y,7) €Yo x R:0 <r < p,(Xo)} such that for all y € Yj

o Y(mHy) N Xo) = {y} x [0, 11y(Xo)];

e Y.y [x, coincides with the Lebesgue measure on {y} x [0, py(Xo)].
The reader may find further details in [GM89, Thm. 2.3], where the same construc-
tion is discussed in a more refined setting of Borel disintegrations.

Using the isomorphism 1, we can identify each 7=!(y) N Xy, ¥ € Yp, with

[0, 1y (X0)]. Since every T € [Ro] preserves v-almost every p,, we may rescale
these intervals and view any T € [Ro] as an element of LO(Yp, vg, Aut([0, 1], \)).
Conversely, every f € LO(Yp, v, Aut([0,1],\)) gives rise to Ty € [Ro] via the
notationally convoluted but natural

Ty(x) = v~ (n(x), (f(7(2)) - projs (¢ (2))/ ta(a) (X0)) ti(w) (X0))

which, in plain words, simply applies f(7(z)) upon the corresponding fiber identified
with [0, 1] using +. This map is an isomorphism between the groups [Ro] and
LO(}/()7 Vo, Aut([O, 1], )\))

Let us say that R has atomless classes if p, is atomless v-almost surely or,
equivalently, u(X,) = 0 in the notation above. We may summarize the discussion
so far into the following proposition.
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ProprosITION C.3. Let R be a smooth measurable equivalence relation on a
standard Lebesgue space (X, u). There are (possibly empty) standard Lebesgue
spaces (Yi,vr), k € N, such that the full group [R] < Aut(X,p) is (abstractly)
isomorphic to

LO(Yo, v, Aut([0,1], 1)) x [] LY, v, &),
n>1
where &,, is the group of permutations of a n-element set. If u is atomless, then so
are the spaces (Yn,vpn), n > 1. If R has atomless classes, then all (Y, vy), n > 1,
are negligible and [R] is isomorphic to L°(Yy, v, Aut([0, 1], \)).

We can further refine the product in Proposition [C.3| by decomposing the spaces
(Y, V) into individual atoms and the atomless remainders. More specifically, let
(Z,vz) be a standard Lebesgue space and G be a Polish group. Given a measurable
partition Z = Zy LI Z1, every function f € L°(Z,vz,G) can be associated with a
pair (fo,f1) € LO(Z(),I/Z@,G) X LO(Zl,I/ZJ,G), Vzi=1Vz rZi and f; = f [ZH which
is an isomorphism of the topological groups. The same consideration applies to
finite or countably infinite partitions.

PROPOSITION C.4. Let (Z,vz) be a standard Lebesque space and G be a Polish
group. For any finite or countably infinite measurable partition Z = | |, .; Zn, there
is an isomorphism of topological groups L°(Z,vz,G) and [],c; L Zn,vzn, G),
where vz, is the restriction of vz onto Z,.

Applying Proposition to the partition of (Z,vz) into the atomless part Zj
and individual atoms Z, = {z;} (if any), and noting that for a singleton Zj the
group L(Z,vzk, G) is naturally isomorphic to G, we get the following corollary.

COROLLARY C.5. Let (Z,vz) be a standard Lebesgue space and G be a Polish
group. Let Z, C Z be the set of atoms of Z and Zy = Z \ Z, be the atomless part.
The group LY(Z,vz,G) is isomorphic to LO(Zy, vz | 2,,G) x G1Zal,

Combining the discussion above with Proposition we obtain a very concrete
representation for [R]. In the formulation below, G is understood to be the trivial

group.

ProOPOSITION C.6. Let R be a smooth measurable equivalence relation on a
standard Lebesgue space (X, ). There are cardinals £, < XN and €, € {0,1} such
that

[R] = LO([0, 1], A, Aut([0, 1], ) x Aut([0, 1], ) x ([T LO(10,1], A, &) x &3 ).
n>1

If w is atomless, then k, =0 for all n > 1; if R has atomless classes, then e, =0

forall m > 1.

So far we viewed [R] as an abstract group. This is because neither of the two
natural topologies on Aut(X, ) play well with the full group construction—[R |
is generally not closed in the weak topology, and not separable in the uniform
topology whenever u(Xg) > 0. Nonetheless, the isomorphism given in Proposi-
tion shows that there is a natural Polish topology on [R], which arises when
we view groups L%(Yp, vo, Aut([0, 1], A)) and LO(Y,,, v,, &,,) as Polish groups in the
topology of convergence in measure. It is with respect to this topology we formulate
Proposition [C.7}
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ProprosITION C.7. Let R be a smooth measurable equivalence relation on a
standard Lebesgue space (X, ). The set of periodic elements is dense in [R].

PROOF. Rokhlin’s Lemma implies that any 7' € [R] can be approximated in the
uniform topology by periodic elements from [T'] C [R]. Since the uniform topology
is stronger than the Polish topology on [R], the proposition follows. (]

C.2. Tessellations

An important feature of locally compact group actions is the fact that they
all admit measurable cross-sections. This was proved by J. Feldman, P. Hahn,
and C. Moore in [FHMY78]|, whereas a Borel version of the result was obtained by
A. S. Kechris in [Kec92].

DEFINITION C.8. Let G ~ X be a Borel action of a locally compact Polish
group. A cross-section is a Borel set C C X which is both

e a complete section for R: it intersects every orbit of the action and
e lacunary: for some neighborhood of the identity 1¢ € U C G one has
U-cnNU-c =@ for all distinct ¢, ¢’ € C.

A cross-section C is K-cocompact, where K C G is a compact set, if K -C = X; a
cross-section is cocompact if it is K-cocompact for some compact K C G.

Any action G ~ X admits a K-cocompact cross-section, whenever K C G is
a compact neighborhood of the identity (see [Slul7, Thm. 2.4]). We also remind
the following well-known lemma on the possibility to partition a cross-section into
pieces with a prescribed lacunarity parameter.

LEMMA C.9. Let G ~ X be a Borel action of a locally compact Polish group
and C be a cross-section for the action. For any compact neighborhood of the
identity V- C G, there exists a finite Borel partition C = | |, C; such that each C;
is V-lacunary.

ProOOF. Set K = (VUV 1% and let U C G be a compact neighborhood of the
identity small enough for C to be U-lacunary. Define a binary relation G on C by
declaring (¢, ¢’) € G whenever ¢ € K - ¢’ and ¢ # ¢’. Note that G is symmetric since
so is K. We view G as a Borel graph on C and claim that it is locally finite. More

specifically, if A is a right Haar measure, then the degree of each ¢ € C is at most
[ - L

Indeed, let cq,...,cy € C be distinct elements such that ¢; € K -¢g for all ¢ < N;
in particular (¢;, ) € G for i > 1. Let k; € K be such that k; - co = ¢;. Lacunarity
of C asserts that sets U - ¢; = Uk; - ¢g are supposed to be pairwise disjoint, which
necessitates Uk; to be pairwise disjoint for 0 < i < N. Clearly Uk; CUK ask; € K.
Using the right-invariance of A, we have A(UK) > A(|,«y Uk:) = (N 4+ 1)A(U),

and thus N +1 < /\,5%?’ as claimed.

We may now use [KST99, Prop. 4.6] to deduce existence of a finite partition
C = ||, C; such that no two points in C; are adjacent. In other words, if ¢, ¢ € C;
are distinct, then ¢ € K - ¢/, and therefore V- ¢cNV - ¢ = &, which shows that C;
are V-lacunary. O

Every cross-section C gives rise to a smooth subrelation of R by associating to
x € X “the closest point” of C in the same orbit. Such a subrelation is known as
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the Voronoi tessellation. For the purposes of Chapter [5] we need a slightly more
abstract concept of a tessellation which may not correspond to Voronoi domains.
While far from being the most general, the following treatment is sufficient for our
needs.

DEFINITION C.10. Let G ~ X be a Borel action of a locally compact Polish
group on a standard Borel space and let C C X be a cross-section. A tessellation
over C is a Borel set WW C C x X such that

(1) all fibers W, = {z € X : (¢,x) € W} are pairwise disjoint for ¢ € C;
(2) for all ¢ € C elements of W, are Rg-equivalent to ¢, i.e., {c} x W, C Rg;
(3) fibers cover the phase space, X = | |.co We.

A tessellation W over C is N-lacunary for an open N C G if
{(¢, N-¢):ceC} CW.
It is K-cocompact, K C G, if W C {(¢,K -¢) : c € C}.

Any tessellation W can be viewed as a (flipped) graph of a function, since for
any ¢ € X there is a unique ¢ € C such that (¢,z) € W. We denote such ¢ by
mw(x), which produces a Borel map my : X — C. There is a natural equivalence
relation Ryy associated with the tessellation. Namely, x1 and x5 are Ryy-equivalent
whenever they belong to the same fiber, i.e., my(x1) = mw(x2). In view of the
item , Rw C R¢ and moreover, every Rg-class consists of countably many
Ryy-classes.

Voronoi tessellations provide a specific way of constructing tessellations over a
given cross-section. Suppose that the group G is endowed with a compatible proper
norm ||-||. Let D : Rg — R be the associated metric on the orbits of the action (as
in Section and let <¢ be a Borel linear order on C. The Voronoi tessellation
over the cross-section C relative to a proper norm ||-|| is the set Ve C C x X defined
by

Ve ={(c,z) €Cx X : cRgw and for all ¢’ € C such that ¢ Rga either
D(c,x) < D(¢,x) or
(D(c,z) = D(',z) and ¢ Z¢ ') }.

Properness of the norm ensures that for each € X there are only finitely many
candidates ¢ which minimize D(c, z), and hence each x € X is associated with a
unique ¢ € C.

For the sake of Chapter [5] we need a definition of the Voronoi tessellation for
norms that may not be proper. The set V¢ specified as above may in this case fail
to satisfy item of the definition of a tessellation, as for some = € X there may
be infinitely many ¢ € C that minimize D(c, z), none of which are <¢-minimal. We
therefore need a different way to resolve the points on the “boundary” between the
regions, which can be done, for example, by delegating this task to a proper norm.

DEFINITION C.11. Let ||-|| be a compatible norm on G and let C be a cross-
section. Pick a compatible proper norm ||-||" on G' and a Borel linear order <¢ on C.
Let D and D’ be the metrics on orbits of the action associated with the norms |||
and |-|| respectively. The Voronoi tessellation over the cross-section C relative
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to the norm ||-|| is the set Ve C C x X defined by

Ve ={(c,z) €Cx X : cRgx and for all ¢ € C such that ¢'R¢a either
D(c,x) < D(c',x) or
(D(c,z) = D(¢',x) and D'(c,z) < D'(d,z)) or
(D(c,x) = D(',z) and D'(c,x) = D'(¢,z) and ¢ =¢ ¢ ) }.

The definition of the Voronoi tessellation does depend on the choice of the norm
|-|" and the linear order <¢ on the cross-section, but its key properties are the
same regardless of these choices. We therefore often do not specify explicitly which
|-|" and <¢ are picked. Note also that if the cross-section is cocompact, then every
region of the Voronoi tessellation is bounded, i.e., sup,¢cx D(z, . (x)) < +oo.

Our goal is to show that equivalence relations Ry, are atomless in the sense of
Section as long as each orbit of the action is uncountable. To this end we first
need the following lemma.

LEMMA C.12. Let G be a locally compact Polish group acting on a standard
Lebesgue space (X, p) by measure-preserving automorphisms. Suppose that almost
every orbit of the action is uncountable. If A C X is a measurable set such that the
intersection of A with almost every orbit is countable, then pu(A) = 0.

PROOF. Pick a proper norm ||-|| on G, let C be a cross-section for the action,
let By, C G be an open ball around the identity of sufficiently small radius 2r > 0
such that By, - ¢N By, - ¢ = & whenever ¢, ¢’ € C are distinct, and let V¢ be the
Voronoi tessellation over C relative to ||-||. Note that Ba, - ¢ is fully contained in the
Ry.-class of ¢ and set X = B, -C. Let also (gn)nen be a countable dense subset
of G.

We claim that it is enough to consider the case when A intersects each Ry -class
in at most one point. Indeed, the restriction of Ry, onto A4 is a smooth countable
equivalence relation, so one can write A = | |, A;,, where each A7, intersects each
Ry,-class in at most one point. To simplify notations, we assume that A already
possesses this property.

Let v : X — N be defined by v(z) = min{n € N: 2Ry, g,z and g,z € X}. Let
A, = AN~ !(n) and note that sets A, partition A. It is therefore enough to show
that u(A,) = 0 for any n € N. Pick ng € N. The action is measure-preserving and
therefore p(Any) = ((gnoAny)- Set By = gnoAn, and note that for any x € By and
g € B, C G one has grRy,x. If the action were free, we could easily conclude that
w(Bo) = 0, since sets gBy, g € B, would be pairwise disjoint. In general, we need
to exhibit a little more care and construct a countable family of pairwise disjoint
sets B,, as follows.

For z € By let 7,(z) = min{m € N : 2Ry, gmz and gnzr & U, Bn}. The
value 7, (z) is well-defined because the stabilizer of z is closed and must be nowhere
dense in B, due to the orbit G-« being uncountable. Put B,,;1 = {gTw,(m)x cx € By}
and note that u(B,) = u(By). We get a pairwise disjoint infinite family of sets B,
all having the same measure. Since p is finite, we conclude that pu(By) = 0 and the
lemma follows. [

COROLLARY C.13. Let G be a locally compact Polish group acting on a standard
Lebesgue space (X, ) by measure-preserving automorphisms, let C be a cross-section
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for the action and let W C C x X be a tessellation. If p-almost every orbit of G is
uncountable, then Ryy is atomless.

ProoF. Counsider the disintegration (u.)cec of Ry relative to (mpw,v), where
mw : X = Cand v = (mpyy ). Let X, C X be the set of atoms of the disintegration.
Since v-almost every p. is finite, fibers 77;\,1 (¢) have countably many atoms. Since
every tessellation has only countably many tiles within each orbit, we conclude that
X, has countable intersection with almost every orbit of the action. Lemma [C.12]
applies and shows that u(X,) = 0, hence Ryy is atomless as required. d

Consider the full group [Ryy] which by Proposition and Corollary
is isomorphic to LO(Y, v, Aut([0,1],\)) for some standard Lebesgue space (Y,v).
This full group can naturally be viewed as a subgroup of [R¢] and the topology
induced on [Ryy] from the full group [R¢] coincides with the topology of converges
in measure on LO(Y, v, Aut([0, 1], A)) (see Section 3 of [CLM16|). We therefore have
the following corollary.

COROLLARY C.14. Let G be a locally compact Polish group acting on a standard
Lebesgue space (X, u) by measure-preserving automorphisms, let C be a cross-section
for the action and let W C C x X be a tessellation and my : X — C be the corre-
sponding reduction. If p-almost every orbit of G is uncountable, then the subgroup
[Rw] < [Rg] is isomorphic as a topological group to LO(C, (mw)«u, Aut([0, 1], \)).
If moreover all orbits of the action have measure zero, then (mw )« is non-atomic
and [Ryw] is isomorphic to L2([0,1], X, Aut([0, 1], \)).

C.3. Ergodic decomposition

Let G ~ X be a free measure-preserving action of a locally compact group on a
standard probability space (X, i). The space &€ = EINV(G ~ X) of invariant ergodic
probability measures of this action possesses a structure of a standard Borel space.
The Ergodic Decomposition theorem of V. S. Varadarajan [Var63, Thm. 4.2] asserts
that there is an essentially unique Borel Rg-invariant surjection X >z +— v, € £
and a probability measure p on & such that y = [, ¢ Vdp(v) in the sense that for all
Borel A C X one has ju(A) = [ v(A)dp(v).

There is a one-to-one correspondence between measurable Rg-invariant func-
tions h : X — R and measurable functions i : & — R given by h(v,) = h(z).
For measures p and p as above, this correspondence gives an isometric isomor-
phism between L!(£,R) and the subspace of L!(X,R) that consists of Rg-invariant
functions.






APPENDIX D

Conditional measures

The ergodic decomposition theorem, as formulated in Section[C.3] is not available
for general probability measure-preserving actions of Polish groups. Conditional
measures provide a useful framework to remedy this. As before, Aut(X, ) stands
for the group of measure-preserving automorphisms of a standard probability space.
It is more useful, however, to view Aut(X, i) as the group of measure-preserving
automorphisms of the measure algebra MAlg(X, i) of (X, i), i.e., is the Boolean
algebra of equivalence classes of Borel subsets of X, identified up to measure zero.
The measure algebra is endowed with a natural metric d,, given by d,(A,B) =
w(A A B). Completeness of (MAlg(X,u)) in this metric is a standard and well-
known fact (see, for instance, [Kec95| Exer. 17.43]), which we include for reader’s
convenience.

PROPOSITION D.1. The metric space (MAlg(X, 1), d,) is complete.

PRrOOF. It suffices to show that a Cauchy sequence (A, ), admits a converg-
ing subsequence. Passing to a subsequence if necessary, we may assume that
dy (A, Any1) < 277 holds for all n, and therefore ) p(An A Apq1) < +o00. The
set

A={xz € X :x € A, for all but finitely many n € N}

is the limit we seek. Indeed, given an € > 0 and an index NN chosen so large that
Yoy AR A A1) <€ foralln > N and all x outside of the set U5y An A Ani1
of measure at most €, we have x € A, if and only if z € A. |

Note that closed (or equivalently, metrically complete) subalgebras of MAlg(X, i)
are in a natural one-to-one correspondence with complete (in the measure-theoretical
sense) o-subalgebras of the o-algebra of Lebesgue measurable sets.

D.1. Conditional expectations

We review here how conditional expectations can easily be defined without
appealing to disintegration.

Let M be a closed subalgebra of MAlg(X, ) and let L2(M, i) denote the
L? space of real-valued M-measurable functions. Note that L2(M, i) is a closed
subspace of L2(X, u) = L2(MAlg(X, ), ). The M-conditional expectation is
the orthogonal projection Eys : L2(X, 1) — L2(M, p). Tt is also uniquely defined by
the condition

(D.1) /ngdu:/XEM(f)gd,u for all f € L*(X,p) and all g € L2(M, p).

101
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By the density of step functions in L2(M, ), the conditional expectation can
equivalently be defined as the linear contraction L2(X, u) — L2(M, u) satisfying

(D.2) AfdM:AEM(f)du for all A€ M and all f € L?(X, p).

Positive functions are exactly those whose dot product with any characteristic
function is positive. Letting ¢ in Eq. range through the collection of all
characteristic functions of sets in M shows that the conditional expectation E,; is
positivity-preserving.

PROPOSITION D.2. If f € L?(X,pu) is non-negative, f >0, then Ep(f) > 0.

While we defined conditional expectations as operators on L2(X, ), their
domain can be extended to all of L!(X, u), making Ej; a contraction from L'(X, p)
to LY(M, p). This is justified by the following proposition.

PROPOSITION D.3. The conditional expectation By : L2(X, pn) — L2(M, p) is a
contraction when the domain and the range are endowed with the L' norms.

ProoF. If f € L2(X, ) is non-negative, f > 0, then Eq. yields

||f||1Z/deMZ/Xf'ldMZ/)(]EM(f)-ldu:/)(EM(f)du.

Since Eps(f) > 0 by Proposition we conclude that ||[Ea(f)[]; = [|f||; for all
non-negative f € L%(X, p).

For an arbitrary f € L2(X,u), set fT = max{f,0} and f~ = max{—f,0}.
Note that functions f+, f~ are non-negative and belong to L?(X, u). Furthermore,
fT—=f=fand | fH),+If"Il; =If]l;- We therefore have

Ear (NIl = [[Ear(fF = FOI; < NEm (PO + [Eac(FO
but the latter term is equal to || fT||, + |/~ |l; = |||, which finishes the proof. O

REMARK D.4. By the previous proposition, Ej; admits a (necessarily unique)
extension to a contraction
Ear : LYX, p) — LM, p).

Moreover, since every non-negative integrable function can be written as an increasing
limit of bounded non-negative functions, the analog of Proposition continues to
hold for f € LY(X, u).

D.2. Conditional measures

Throughout this section, we let x4 : X — {0,1} denote the characteristic
function of A C X.

DEFINITION D.5. Let M be a closed subalgebra of MAlg(X,u). The M-
conditional measure of A € MAlg(X, ), denoted by ppr(A), is the conditional
expectation of the characteristic function of A, i.e., uap(A) = Ep(xa)-

In particular, the conditional measure pps(A) is an M-measurable function. It
enjoys the following natural properties.

PROPOSITION D.6. Let M C MAlg(X, u) be a closed subalgebra. The following
properties hold for all A € MAlg(X, p):

(1) pup(2) =0 and pp(X) =1, where 0 and 1 denote the constant maps;
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(2) par(A) takes values in [0,1] and [y par(A) = p(A);
(3) pnr is o-additive: if A=/, An, A, € MAIg(X, 1), is a partition then

par(A) = 3 par(An),

neN

where the convergence holds in L*(M, u);
(4) if T € Aut(X, u) fizes every element of M, then upn(A) = pap(T(A)).

PROOF. The first item is clear from the fact that both @ and X belong to M, so
their characteristic functions are fixed by Ej»;. The second item follows from the first
and positivity of the conditional expectation; the equality is a direct consequence of
Eq. The third one is a consequence of the L' continuity of Ej; and its linearity,
noting that xa = > xa, in LY(M, u).

Finally, the last item follows from the uniqueness of conditional expectation
given by Eq. Indeed, if an automorphism T fixes every element of M, then

/foT_lduz/ fdu:/fdu for all B € MAlg(X, p),
B T(B) B

so Epr(foT7Y) = Epn(f). Taking f = xa for A € MAlg(X, i), we conclude that
i (T(A)) = par (A). 0

D.3. Conditional measures and full groups

Conditional measures, as defined in Section are associated with closed sub-
algebras of MAlg(X, u). Each subgroup G < Aut(X, i) gives rise to the subalgebra
of G-invariant sets, and we may therefore associate a conditional measure with the
group G itself.

DEFINITION D.7. Let G be a subgroup of Aut(X, ). The closed subalgebra
of G-invariant sets is denoted by Mg and consists of all A € MAlg(X, i) such
that gA = A for all g € G.

By definition, G < Aut(X, p) is ergodic if Mg = {&, X}. In this case, the
Mg-conditional measure is the measure p itself. The following lemma is an easy
consequence of the definitions of the full group generated by a subgroup (Section
and the weak topology on Aut(X, u).

LeEMMA D.8. Let G < Aut(X, u) be a group.

(1) If [G] is the full group generated by G, then Mg = M[g).
(2) If T' < G is dense in the weak topology, then Mp = Mg.

Given a subgroup G < Aut(X, i), we denote the Mg-conditional measure simply
by pug. Note that G is ergodic if and only if ug = p.

Recall that a partial measure-preserving automorphism of (X, u) is a
measure-preserving bijection ¢ : dom ¢ — rng¢ between measurable subsets of
X, called the domain and the range of ¢, respectively. The pseudo full group
generated by a group I' < Aut(X, u1) is denoted by [[T']] and consists of all partial
automorphisms ¢ : domy — rngp for which there exists a partition domp =
Ll,, An and elements v, € I' such that ¢ [4,= v, [a, for all n. Elements of
[[T]] automatically preserve the conditional measure pr in view of item of

Proposition [D.6
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LEMMA D.9. Let G < Aut(X, ) be a group and let A, B € MAlg(X, ) satisfy
uc(A) = pg(B). There exists an element ¢ € [[G]] such that domy = A and
rngyp = B.

PRrROOF. Let I' = {7, : n € N} be a countable weakly dense subgroup of G.
Note that pur(A) = ug(A) = usg(B) = pr(B) by Lemma and also clearly
0] < [[G]).

We define inductively sequences (A, ), and (B,,), of subsets of A and B respec-
tively by setting Ag = AN ’yalB and By = ypAp, and then putting for n > 1

_ ~1 _ _
An(A\mgnAm)mn <B\mgan) and B, = vnAn

By construction, the sets A,, are pairwise disjoint subsets of A4, v, A, = B,, and
the sets B,, are pairwise disjoint subsets of B. We claim that ¢ = | |, 5 [a, is the
desired element of [[G]].

Suppose towards a contradiction that either dom ¢ # A or rng ¢ # B. Since
I preserves pur and pr(A) = pur(B), the sets A\ dom ¢ and B \ rng ¢ have the
same Mrp-conditional measure, which is not constantly equal to zero. The set
A= U,er 7(A\ dom¢) is I'-invariant and non zero. Its conditional measure is
therefore the characteristic function  z, which must be greater than or equal to
pr(A\ dom ) = pur(B \ rng ). We conclude that B\ nge C J, cpv(4\ domyp).
In particular, there is the first n € N such that (A \ dom¢) N, (B \ rngyp) is
non zero. By construction, this set should be a subset of A,,, yielding the desired
contradiction. (]

PROPOSITION D.10. Let G be a full subgroup of Aut(X,u). The following
conditions are equivalent for all A, B € MAlg(X, p):
(1) pe(A) = pe(B);
(2) there is T € G such that T(A) = B.
(8) there is an involution T € G such that T(A) = B and suppT = A A B.

PRrOOF. The implication :> is a direct consequence of the definition of
Mg along with the item of Proposition [D.6] Also (B)=-(2) is evident.

We now prove the implication (1)=(3). The assumption pug(A) = ug(A4)
guarantees that ug(A\ B) = pg(B \ A). Lemma applies and produces an
element ¢ € [[G]] such that (A \ B) = B\ A. The required involution T is then
given by ¢ Ll p~! LI idx\(aaB)- [l

D.4. Aperiodicity

A countable subgroup T' < Aut(X, u) is called aperiodic if almost all the
orbits of some (equivalently, any) realization of its action on (X, u) are infinite.
The so-called Maharam’s lemma provides a characterization of aperiodicity in a
purely measure-algebraic way. We begin by formulating a variant of the standard
Marker Lemma for countable Borel equivalence relations (see, for instance, [KIM04|
Lemma 6.7]).

LEMMA D.11. Let I' ~ X be a Borel action of a countable group on a standard
Borel space X. For every Borel C C X, there is a decreasing sequence (Cp), of
Borel subsets of C such that C C T -C,, for each n, and the set (), Cy, intersects
the I'-orbit of every x € X in at most one point. Furthermore, if all orbits of T are
infinite, sets C,, can be chosen to have the empty intersection, (), C, = 2.



D.4. APERIODICITY 105

The following result is essentially due to H. Dye [Dye59|, where it is called
Maharam’s lemma.

THEOREM D.12 (Maharam’s lemma). Let T' < Aut(X, ) be a countable sub-
group. The following are equivalent:
(1) T is aperiodic;
(2) for any A € MAlg(X, ) and any Mr-measurable function f: X — [0,1]
satisfying f < pr(A), there is B C A, B € MAlg(X,u), such that
pr(B) = f.

PROOF. Let us begin with the easier #, which is proved by the contra-
positive. Assume that does not hold and I is not aperiodic. Let n € N be such
that the I'-invariant set X,, = {z € X : |I"- z| = n} has non-zero measure. We may
assume that X bears a Borel total order (for instance, by identifying X with [0, 1]).
Let A={z € X, : = max{I" - z}} be the set of maximal points of the n-element
I'-orbits and set ¢, dom¢ = X, \ A4, to be the element of the pseudo full group [[I']]
that takes every x € X,, \ A to its <-successor in the orbit I - . Given any B C A,
the set UZ;; ¢~ *(B) is I'-invariant, hence ,U/F(l_lz;é ¢~ *(B)) takes values in {0,1}.
Also

ur (L] o B) = 3 (7" (B)) = nur(B),
k=0 k=0

where the last equality is a consequence of Proposition [D.6 We conclude that pur(B)
necessarily takes values in {0, 2}, which contradicts

We now assume that I' is aperiodic and prove the direct implication ([])=-(2).
The argument is based on the following crucial claim.

CraM. For every C' € MAlg(X, u), for every Mp-measurable not almost surely
zero f : X — [0,1] such that f < up(C), there is a non zero B C C satisfying

pr(B) < f.

PROOF OF THE CLAIM. Let (C,), be a vanishing sequence of subsets of C
given by Lemma Note that pr(C,) — 0 in L', since ), C,, = @ and the
C,’s are decreasing. Passing to a subsequence, we may assume that convergence
ur(Cr) — 0 holds pointwise. Set B,, = {x € C,, : ur(Cy)(x) < f(z)} and note that
pur(Bn) < pr(Cy,) and therefore ur(B,,) < f.

Pointwise convergence ur(C),) — 0 guarantees existence of an index n such that
w(By) > 0, and so the set B = B, is as required. Oelaim

The conclusion of the theorem now follows from a standard application of
Zorn’s lemmaﬂ Indeed, the latter provides a maximal family (B;);cs of pairwise
disjoint positive measure elements of MAlg(X, ) contained in A and satisfying
> icr #r(B;) < f. The index set I has to be countable, and if B = | |;.; B; then
pr(B) = > ;e ur(Bi) < f. Assume towards a contradiction that ur(B) is not equal
to f almost everywhere, and use the previous claim to get a non null B’ C A\ B with
pr(B’) < f — pr(B), contradicting the maximality of (B;);c;. Therefore ur(B) = f
as claimed. O

We conclude this appendix with a useful consequence of aperiodicity.

1A more constructive version of the whole argument can be found in [LM14} Prop. D.1].
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LEMMA D.13. Let G < Aut(X, ) be an aperiodic full group. For each set
B e MAlg(X, ), there is an involution U € G whose support is equal to B.

PrOOF. Theorem gives A C B such that ug(A) = pg(B)/2. We then have

pe(B\ A) = pug(B) — pg(B)/2 = pg(A), and item (3] of Proposition [D.10] provides
an involution T € G satisfying T(B\ A) = A and suppT = (B\A)AA=B. O

REMARK D.14. Lemma[D.I3] in fact, characterizes aperiodicity of full groups:
if G is not aperiodic, then there is some B € MAlg(X, u) which is not the support
of any involution since its Mg-conditional measure cannot be split in half (see the
proof of the direct implication in Theorem .
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