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ABSTRACT. We consider the shortest path problem on graphs with weights taking values in Cartesian products
of cost monoids. Such cost structures appear in multiobjective planning including, for instance, the minimum-
violation planning framework. It is known that these products often do not satisfy the conditions of a cost monoid.
Classical dynamic programming graph search algorithms may therefore fail to find an optimal solution.

We isolate the concept of a regular cost monoid and propose an iterative search algorithm that finds an optimal
path in graphs weighted by products of such costs. Our algorithm allows this class of multiobjective planning
problems to be solved in polynomial time.

1. INTRODUCTION

Computing the shortest path between two vertices (called the root and the goal) on a weighted graph
is a central problem in robot motion planning [15], and it is of particular interest to autonomous vehicle
navigation [7, 10, 16]. In the classical shortest path problem (SPP), edge weights are positive real numbers
that determine the cost of traversing a given edge, and the path cost is the sum of costs of its constituting
edges. A plethora of algorithms have been discovered for computing the shortest path with respect to the
path cost objective (e.g., Dijkstra’s algorithm [5]) and minimizing the number of operations needed to find
a solution (e.g., A* algorithm [12]).

However, quantifying complex robot behavior in a vast number of scenarios often requires considering
a trade-off between many competing objectives. In the case of navigating autonomous cars in urban envi-
ronments, for example, these objectives may capture traffic laws, ethics, liability, local driving culture, and
ride quality. Previous multiobjective shortest path problem (MSPP) formulation distills the trade-off into
a solution set of Pareto optimal paths that connect the root to the goal [9]. In [1, 18, 20], Dijkstra’s and A*
algorithms have been adapted for solving the MSPP. It was shown in [17] that memory requirements for
storing Pareto optimal solution set can be polynomial in MSPP size. However, the time complexity of all
known algorithms is exponential in the worst case. Two roadblocks remain for practical applications of the
MSPP framework: i) the problem of finding a Pareto optimal set is known to be NP-hard [11], and ii) the
trade-off remains in the solution set and must be resolved using a separate procedure.

We have previously considered the second of these difficulties and advocated for using a rulebook-based
approach [3], in which a rule defines a real-valued functional on the set of vehicle paths, and a rulebook
defines a hierarchy from the most to the least critical rule. In other words, the rulebook approach is a
generalization of the minimum-violation planning framework [2, 21, 22] in that it produces a path with the
least severe violation of rules (preferably no violation at all). More importantly, a rulebook-based solution
is in a Pareto optimal set; hence, our approach can be used to address both practical limitations of the MSPP.

We consider a generalization of the SPP (or just GSPP for brevity), in which graph edge weights are
elements of a monoid with a total order, and the path cost is defined as an accumulation of all costs of its
edges with respect to the monoid operation. Since the set of positive real numbers (R>0) is a totally ordered
monoid with respect to the addition operation (which we denote R+), such an extension is indeed a gener-
alization of the classical SPP. Moreover, this formulation generalizes the previous minimum-violation plan-
ning framework, in which edge cost can be represented by the lexicographically ordered monoid (R>0)n

equipped with the coordinate-wise summation operation.
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The set up of GSPP is closely related to the one considered in [6], where the important notion of a cost
monoid1 has been introduced (see also [14]). We are particularly interested in multiobjective weights, i.e.,
products of cost monoids, which we call multicosts. It is also worth mentioning that monoid-type cost
structures are similar to those often considered in the so-called algebraic path problem (see, for instance, [23,
Section 8], [13]).

In addition to classical SPP and minimum-violation framework, in which edge costs are accumulated
along graph paths using the addition operation, GSPP enables using the maximum operation Rm = (R>0, max),
as well as any other binary operations subject to monoid axioms. In [3], we found max particularly useful
for accurate mathematical modeling of “nonadditive” rules, such as keeping a distance from other road
users, for example. In the context of the MSPP, a single nonadditive cost component, a so-called “bottle-
neck”, have been considered in [8], which expanded on the previous dynamic programming algorithm
introduced in [19]. Furthermore, the MSPP with at least two bottlenecks has been studied in [4]. In this
setting, our approach can be considered as an efficient strategy for finding a path with arbitrarily many
bottlenecks according to a set of prioritized rules.

It is known that traditional graph search algorithms may fail to find an optimal solution, for example,
if the monoid operation is a product of max and sum (see, for instance, [6]). The main contribution of our
paper is the notion of regularity for cost monoids (Section 5) together with an iterative algorithm (Section 6)
that finds an optimal path in graphs weighted by regular multicosts (i.e., prioritized products of regular cost
monoids, of which R+ and Rm are examples).

The paper is structured as follows. Section 2 introduces notions and definitions used throughout the
article. Section 3 shows how Dijkstra’s algorithm may fail to find an optimal path when the weights do not
satisfy the axioms of a cost monoid. The concept of an optimal subgraph (relative to the root and the goal
vertices) is introduced in Section 4, where we also present an efficient algorithm of computing it. Section 5
is devoted to the notion of regularity of costs. We provide an algebraic characterization of regularity for cost
monoids, show that the classical monoids R+ and Rm are regular, give an example of a non-regular monoid,
and argue that the property of being regular is closed under taking direct products with lexicographic order.
Finally, in Section 6, we present the iterative algorithm of computing optimal paths in graphs weighted by
regular multicosts.

2. SHORTEST PATH PROBLEM ON DIRECTED GRAPHS WITH CUMULATIVE ALGEBRAIC COSTS

We consider a generalization of the Shortest Path Problem (SPP) on directed graphs by replacing real-
valued edge weights with elements of monoids with an order. Using this weight structure, we define
cumulative path costs and the notion of path optimality. This formulation is similar to the one given in [6],
with the notable difference being that we do not require the operation ∗ to be isotone.

Definition 1. We use the following algebraic concepts.

• A monoid (S, ∗, 1) is a set Swith an associative binary operation ∗ and an element 1, called the unit,
such that a ∗ 1 = 1 ∗ a = a for all a ∈ S.

• A quadruple (S, ∗, 1,6), where (S, ∗, 1) is a monoid and 6 is a total order on S, is a monoid with an
order. We use the notation < to mean the strict order induced by 6, i.e., a < b ⇐⇒ a 6= b∧ a 6 b.
If operations ∗ and 6 are unambiguous, we may simply use S instead of the tuple.

• The operation ∗ is isotone if a 6 b implies a ∗ c 6 b ∗ c and c ∗ a 6 c ∗ b for all a,b, c ∈ S.
• A monoid with an order S is said to be a cost monoid2 if the operation ∗ is isotone and 1 is the

smallest element: 1 6 a for all a ∈ S.

1The term used in [6] is “cost algebra”. We use a slightly different (but equivalent) presentation that requires only one binary
operation, and therefore choose to speak of a “cost monoid” instead.

2This definition is essentially equivalent to the notion of the cost algebra given in [6]. Since the operations t and u used therein
are uniquely defined by the order, we choose to speak about monoids rather than algebras. Also, the definition of a cost algebra
postulates the existence of a maximal element. It is notationally more convenient for us to avoid making this assumption, but these
two approaches are equivalent, as any cost monoid can be enlarged by adding a maximal element.



HIERARCHICAL MULTIOBJECTIVE SHORTEST PATH PROBLEMS 3

• A monoid S is said to be cancellative3 if for all a,b, c ∈ S

a ∗ c = b ∗ c =⇒ a = b and c ∗ a = c ∗ b =⇒ a = b.

• A product of monoids with an order S1, . . . ,Sn is defined to be the monoid S1 × · · · × Sn equipped
with the coordinatewise operation and lexicographic order.

The two best known examples of cost monoids are R+ = (R>0,+, 0,6) and Rm = (R>0, max, 0,6). As
pointed out in [6], a product of cost monoids may not be a cost monoid, as the ∗ operation may fail to
be isotone relative to the lexicographic order. Indeed, Rm × R+ is not a cost monoid: for a = (0, 1),b =

(1, 0), c = (1, 1) one has a < b, but a ∗ c > b ∗ c. Nonetheless, if S1, . . . ,Sn are cost monoids and Si are
cancellative for all 1 6 i 6 n− 1, then S1 × · · · × Sn is a cost monoid. For instance, R+ is cancellative, while
Rm is not. As noted above, Rm × R+ is not a cost monoid, while the product R+ × Rm is.

Definition 2. A multicost is a monoid with an order represented as a product of cost monoids S1×· · ·×Sn.

Note that a monoid with an order may, in general, be represented as a product of cost monoids in differ-
ent ways. For instance

(R+ × R+)× Rm and R+ × (R+ × Rm)

are two different factorizations of the same monoid with an order. The definition of a multicost assumes
that a particular factorization is chosen, and in particular, the monoids above will be viewed as two different
multicosts depending on which factorization is considered.

A directed graph G = (V ,E) is determined by a set of vertices V , and a set of directed edges E ⊆ V × V .
In addition, we equip directed graphs with two maps: the origin o : E→ V and the target t : E→ V , which
assign to an edge its first and second vertex, respectively.

An (edge) path in a graph is a finite sequence of edges {ei}ni=1, such that t(ei) = o(ei+1) for all 1 6 i < n.
We let P denote the set of all paths in G. Maps o and t extend to P by setting o(p) = o(e1) and t(p) = t(en).
Finally, for a pair of vertices u, v ∈ V , we define the set of paths between these vertices P(u, v) = {p ∈ P |

o(p) = u∧ t(p) = v}.

Definition 3. We consider weighted graphs defined as follows.

• Given a monoid with an order S, a weight on G (or an S-weight if we need to be precise) is a function
w : E→ S.

• The weight function w is extended to the set of all paths w : P → S by setting for a path p ∈ P,
p = (e1, . . . , en),

w(p) = w(e1) ∗w(e2) ∗ · · · ∗w(en).
We refer to the value w(p) as the cost of the path.

Note that E ⊆ P, and moreover the definition ofw on P extends its definition on E. Hence, edge weights
can also be referred to as costs.

Finally, we are ready to define the notion of an optimal path and formulate the generalized Shortest Path
Problem.

Definition 4. A path p in a weighted graph G is said to be optimal if

w(p) 6 w(q) for all q ∈ P(o(p), t(p)).

Problem 5 (Generalized Shortest Path Problem (GSPP)). Given an S-weighted graph G, where S is a monoid
with an order, and two dedicated vertices—the root vr and the goal vg—find an optimal path p in the set
P(vr, vg) or determine that no such path exists.

Note that if we let the monoid S be the set of the nonnegative real numbers with addition
(
R>0,+, 0,6

)
,

then GSPP reduces to the classical SPP.

3A cost monoid is cancellative if and only if the operation ∗ is strictly isotone: a < b implies a ∗ c < b ∗ c and c ∗a < c ∗b for
any element c.
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Remark 6. The setup of GSPP imposes very weak requirements on the operation that composes costs of
individual edges, but it stays within the realm of totally ordered values. The concept of Pareto optimality
and the related notion of Pareto front do not assume that the order on the costs is total, which is therefore
an even broader set of problems than those captured by GSPP.

In this paper, we present an algorithm of solving GSPP when weights S constitute a regular multicost in
the sense of Definitions 2 and 16.

3. MULTICOST GSPP AND FAILURE OF CLASSICAL ALGORITHMS

We begin by presenting an example of a GSPP problem with multicost weights and elaborate on why
classical algorithms, such as Dijkstra, may fail to find an optimal path in this situation. Consider a robot on
a square grid with obstacles as in Figure 1. A robot in position R is going to its goal G. The robot can move
to any of the four adjacent cells: left, right, up, and down. Visiting any cell bears a cost (a, 1), where a is the
Euclidean distance to the nearest obstacle (including the boundary of the grid), and 1 is meant to represent
the length of the cell.

R
G

R
G

FIGURE 1. A robot inside the cell (R) on a square grid moving to the goal cell (G). Left: a
path computed using Dijkstra’s algorithm; Right: the optimal path.

Let Rmin = (R>0 ∪ {∞}, min,∞,>) denote a cost monoid on the non-negative reals together with the
infinity, equipped with the min operation and > order4. Let M be the multicost Rmin × R+. The unit
element ofM is given by (∞, 0).

The cost of a cell, as defined above, can naturally be viewed as an element of the monoid M. The robot
needs to find an optimal path from the root to the goal, which amounts to finding a path that is as far as
possible from all obstacles, and—among all such paths—choose the shortest one.

The problem is set up in such a way that the goal is close to an obstacle, and hence the first coordinate of
an optimal path will necessarily be zero. SinceM is not a cost monoid, Dijkstra’s algorithm may fail to find
an optimal path from the root to the goal. Indeed, the path found by the classical Dijkstra’s algorithm is
shown on the left diagram of Figure1, it has cost (0, 17), while an optimal path (shown on the right diagram
therein) has cost (0, 11).

Being a dynamic programming algorithm, Dijkstra produces paths with optimal initial segments. In
particular, the path from the root to the dashed cell is optimal and has cost (1, 14). On the other hand, the
optimal path to the goal also happens to pass through the dashed cell, and the cost of the initial segment to
this cell is (0, 8), which is worse according to the ordering of M. Nonetheless, suffixed with the remaining
path to the goal, which has cost (0, 3), the order changes: (1, 14) <M (0, 8), but

(0, 17) = (1, 14) ∗ (0, 3) >M (0, 8) ∗ (0, 3) = (0, 11).

The same type of the cost structure naturally appears in graphs that correspond to communication net-
works. Suppose, for instance, our primary aim is to maximize the throughput of a channel, and, among all
channels with the same throughput, we prefer those with lower latency. Since the throughput of a chan-
nel is often modeled as the minimum throughput of its links, and the channel latency equals to the sum

4The cost monoid Rmin is isomorphic to Rm if we extend the latter to include ∞. An isomorphism is given by the map R>0∪{∞} 3
x 7→ 1/x ∈ R>0 ∪ {∞}.
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of its corresponding link latencies, the same monoid M is the appropriate cost structure to capture this
optimization framework.

The classical optimal path search algorithms may, therefore, fail to find an optimal path in a graph
weighted by a multicost that is not a cost monoid itself. We present in Section 6 an algorithm that effectively
finds such a path for regular multicosts.

4. OPTIMAL SUBGRAPH

Unless stated otherwise, throughout this section G denotes an S-weighted graph, where S is a cost
monoid, and vr, vg denote the root and the goal of G respectively. In general, there may be many dis-
tinct optimal paths from vr to vg. We are interested in finding all optimal paths, and in having an efficient
way to store these paths. This is achieved5 through the concept of an optimal subgraph.

Definition 7. Let G be a weighted graph with weights in some monoid with an order (which may not
necessarily be a cost monoid). The optimal subgraph of G is a subgraph OG = (OV ,OE) that consists of
edges that lie on an optimal path:

OE = {e ∈ E : ∃p ∈ P(vr, vg) such that e ∈ p and p is optimal},

and corresponding vertices

OV = {v ∈ V : ∃ e ∈ OE such that v = o(e) or v = t(e)}.

Example 8. To illustrate this concept, consider the graph that corresponds to Figure 1. It is an M-weighted
graph, where M = Rmin × R+ is a multicost. Its optimal subgraph is shown in Figure 2. Note that all the
paths from the root to the goal within the optimal subgraph have the same cost.

R
G

FIGURE 2. Optimal subgraph corresponding to Figure 1.

We will also make use of the notions of the optimal cost-to-come from the root vr and cost-to-go to the goal
vg at every vertex of G, which we denote v.come and v.go, respectively. Formally,

v.come = min{w(p) | p ∈ P(vr, v)} and v.go = min{w(p) | p ∈ P(v, vg)}.

If either P(vr, v) or P(v, vg) is empty we set the corresponding value v.come or v.go to ∞—some new symbol
that is considered to be greater than any other weight.

The following lemma gives a local characterization of an optimal subgraph using the optimal cost-to-
come and cost-to-go.

Lemma 9 (Local Optimal Subgraph Characterization). Let S be a cost monoid, G be an S-weighted graph with
the root vr and the goal vg, and let c be the optimal cost between vr and vg. If c <∞ then

e ∈ OE ⇐⇒ o(e).come ∗w(e) ∗ t(e).go 6 c.

5In Section 5, we show that under an additional assumption of regularity, the optimal subgraph is an efficient representation of all
optimal paths.
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Proof. We begin by noting that the inequality o(e).come∗w(e)∗ t(e).go 6 c can be replaced with the equality,
as the left hand side corresponds to a path from the root to the goal.

Consider an arbitrary e ∈ OE. On the one hand, it follows from the definition of the optimal subgraph
that there exists an optimal p = (e1, . . . , en), such thatw(p) = c and e = ei for some i. Let p ′ = (e1, . . . , ei−1)

and p ′′ = (ei+1, . . . , en). Using the definition of cost-to-come, we find that o(e).come 6 w(p ′). Also from
the definition of cost-to-go, it follows t(e).go 6 w(p ′′). Since by assumption weights form a cost monoid,
we have

o(e).come ∗w(e) ∗ t(e).go 6 w(p ′) ∗w(e) ∗w(p ′′) = w(p) = c.

On the other hand, let’s assume e satisfies o(e).come ∗ w(e) ∗ t(e).go 6 c. We let p ′ = (. . . , e ′i, . . .) be an
optimal path in P(vr, o(e)) and p ′′ = (. . . , e ′′j , . . .) be an optimal path in P(t(e), vg). The path

p = (. . . , e ′i, . . . , e, . . . , e ′′j , . . .)

between vr and vg is optimal because

w(p) = w(p ′) ∗w(e) ∗w(p ′′) = o(e).come ∗w(e) ∗ t(e).go 6 c.

Hence, e is in OE. � �

Let S be a monoid. The opposite monoid to S is the monoid Sop with the same underlying set S and the
operation ∗op defined by

x ∗op y = y ∗ x.

Note that if S is a cost monoid, then Sop is also a cost monoid, when endowed with the same order.
Given a directed graph G with a root vr and a goal vg, the opposite graph Gop has the same underlying

set of vertices, but reverses all edges:

(u, v) ∈ Eop ⇐⇒ (v,u) ∈ E,

and changes the role of the root and the goal: vop
r = vg and vop

g = vr.
Let ForwardDijkstra denote the classical Dijkstra’s algorithm, which is run until all the vertices are

visited (as opposed to stopping as soon as the goal is reached). It is proved in [6] that ForwardDijkstra
finds an optimal spanning tree of the root whenever weights come from a cost monoid. Let also BackwardDijkstra
denote the same algorithm that runs on the Sop-weighted opposite graph Gop. The ForwardDijkstra
therefore computes optimal cost-to-come v.come for each v ∈ V , and likewise BackwardDijkstra com-
putes the optimal cost-to-go v.go—the minimal cost of a path from a vertex v to the goal vg.

We propose the following algorithm for finding an optimal subgraph of a graph weighted in a cost
monoid.

Algorithm 1: OptimalSubgraph
Data: Cost monoid S and a directed S-weighted graph G with a root and a goal vertices.
Result: The optimal subgraph OG of G.

1 ForwardDijkstra(G);
2 BackwardDijkstra(G);
3 set c = vr.go = vg.come;
4 if c = ∞ then
5 return OG = (∅,∅);
6 for e ∈ E do
7 if o(e).come ∗w(e) ∗ t(e).go = c then
8 OE.insert(e);
9 OV .insert(o(e)) and OV .insert(t(e));

10 return OG = (OV ,OE);
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Proposition 10. Let S be a cost monoid, and let G be an S-weighted graph. Algorithm 10 computes an optimal
subgraph of G in time polynomial in the size of the vertex set |V |6.

Proof. Forward and Backward Dijkstra’s algorithms compute optimal costs from the root to a vertex and
from a vertex to the goal. In view of Lemma 9, this gives us a characterization of when an edge lies on an
optimal path. This characterization is used in line 7 of Algorithm 1.

The asymptotic complexity of this algorithm is the same as that of Dijkstra—it runs the Dijkstra’s algo-
rithm twice, followed by a linear pass over edges. � �

5. REGULAR COST MONOIDS

By construction, all optimal paths from vr to vg lie within OG. However, the inverse may not be true—not
every path from vr to vg within OG is optimal.

Definition 11. A monoid with an order S is said to be regular if for all S-weighted graphs any path7 from
the root to the goal within OG is itself optimal.

The definition above explains the use for the concept, but the following lemma provides an inner purely
algebraic characterization that is valid for cost monoids.

Lemma 12 (Algebraic Characterization of Regularity). A cost monoid S is regular if and only if for all a,b, c,d ∈
S such that a ∗ c = a ∗ d = b ∗ c one has b ∗ d 6 a ∗ c.

Proof. Suppose S satisfies the algebraic condition. We show that it is regular. Let p = (e1, . . . , em) be a path
from the root to the goal within OG. Note that e1 ∈ OG, and hence there is some optimal path that goes
through e1. Let 1 6 k 6 m be maximal such that there exists an optimal path p̄ that coincides with p on the
first k edges

p̄ = (e1, . . . , ek, ēk+1, . . . , ēn).

We claim that k = m, and hence p itself is optimal. Suppose towards the contradiction that k < m.
Since ek+1 ∈ OG, there exists an optimal path

q = (f1, . . . , fl, fl+1 = ek+1, fl+2, . . . , fr).

Paths p, p̄, and q are depicted in Figure 3. Consider the weights of the following paths:

a = w(f1) ∗ · · · ∗w(fl)
b = w(e1) ∗ · · · ∗w(ek)
c = w(ēk+1) ∗ · · · ∗w(ēn)
d = w(fl+1) ∗ · · · ∗w(fr)

Note that a ∗ d = w(q) and b ∗ c = w(p̄), which are both optimal, and hence a ∗ d = b ∗ c.

vr vg
e1 ek ek+1

f1

fr

ēk+1

FIGURE 3. Paths p, p̄, and q.

If b 6 a, then by the definition of a cost monoid, b ∗ d 6 a ∗ d, and the path (e1, . . . , ek, fl+1 =

ek+1, fl+2, . . . , fr) is therefore an optimal path that agrees with p on k + 1 many segments, contradicting
the choice of k.

6Our assumption is that comparing and multiplying elements from the cost monoid takes constant time.
7Recall that OG is a directed graph. If the weights S come from a cancellative cost monoid, then all loops in OG will necessarily

have weight 1. This is not necessarily the case for non-cancellative monoids.



8 KONSTANTIN SLUTSKY, DMITRY YERSHOV, TICHAKORN WONGPIROMSARN, AND EMILIO FRAZZOLI

If, on the hand a < b, then a ∗ c 6 b ∗ c, but since a ∗ c is a weight of a path from the root to the goal and
b ∗ c is optimal, we get a ∗ c = b ∗ c. Additionally, since a ∗ d is optimal, we get b ∗ c = a ∗ d. The algebraic
condition applies, and guarantees that b ∗ d 6 a ∗ c, i.e., b ∗ d is optimal. However, b ∗ d is the weight of
the path

(e1, . . . , ek, fl+1, . . . , fr)
which agrees with p on k+ 1 many initial segments contradicting the choice of k.

For the other direction, if S does not satisfy the algebraic condition, there are a,b, c,d such that a ∗ c =

a∗d = b∗c < b∗d. The graph in Figure 4 coincides with its own optimal subgraph, but it has a non-optimal

a 1

b 1

c 1

d 1

vr vg

FIGURE 4. Graph interpretation of the algebraic characterization.

path with the cost b ∗ d. Thus, by definition, S is not regular. � �

Example 13. Many monoids that are often considered in the context of GSPP are regular. This includes, for
instance, all the monoids listed in [6, after Definition 3].

(1) Cost monoid R+ is regular. More generally, any cancellative cost monoid is regular.
(2) Cost monoid Rm is regular, since for a ∗ b = max{a,b} and has

a ∗ c = a ∗ d = b ∗ c =⇒ a ∗ c = max{a,b, c,d} > max{b,d} = b ∗ d.

(3) The cost monoid shown in Table 1, however, is not regular. It consists of five elements 1 < a < b <
c <∞. It is straightforward to verify that it is indeed a cost monoid8. Nonetheless, a ∗ a = a ∗ b =

b ∗ a < b ∗ b, and therefore it is not regular by Lemma 12.

TABLE 1. Non-regular cost monoid

1 a b c ∞
1 1 a b c ∞
a a c c ∞ ∞
b b c ∞ ∞ ∞
c c ∞ ∞ ∞ ∞∞ ∞ ∞ ∞ ∞ ∞

Lemma 14. Let S1 and S2 be regular monoids with an order. The product S = S1 × S2 is a regular monoid with an
order.

Proof. Let πi : S → Si, i = 1, 2, be the projection onto the ith coordinate. Let G be an S-weighted graph
with the weight function w : E → S, and let wi = πi ◦ w be the Si-weight obtained by considering the
corresponding coordinate only. Pick a path p from vr to vg that lies within OG. Our goal is to show that p is
optimal.

We may view G as an S1-weighted graph, so let OG1 denote the optimal subgraph of G relative to the
weight function w1. Note that by the definition of lexicographic order OG is a subgraph of OG1, and hence
p lies within OG1. Since S1 is regular by assumption, the first coordinate of the weight of p is optimal.

Consider now OG1 as an S2-weighted graph with the weight w2, and let OG2 be the corresponding op-
timal subgraph. Note that again OG is a subgraph9 of OG2 and the costs w(q) of all the paths q from vr to

8For example, to check associativity note that x ∗ (y ∗ z) = ∞ whenever neither of x,y,z is equal to 1; similarly for (x ∗ y) ∗ z.
9In fact, OG = OG2.
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vg that lie within OG2 have the same first cost coordinate w1(q) (because such q lies in OG1, and S1 is regu-
lar) and the same second cost coordinate w2(q) (by regularity of S2). Thus any path within OG2 is optimal
relative to w = w1 ×w2. We conclude that the path p is optimal as claimed. � �

Lemma 15. Let S1, . . . ,Sn be regular monoids with an order. The product S = S1 × · · · × Sn is a regular monoid
with an order.

Proof. We argue by induction on n—the number of monoids in the product. The base of induction n = 1 is
trivial. For the step of induction we assume that the lemma has been proved for products of (n − 1)-many
monoids. Set S̃ = S1 × · · · × Sn−1, which is regular by inductive assumption. Note that S is canonically
isomorphic to S̃× Sn, hence Lemma 14 applies and shows that S is regular as well. � �

6. ITERATED ALGORITHM FOR REGULAR MULTICOST GSPP

Definition 16. A multicost S1 × · · · × Sn is said to be regular if all the cost monoids Si in the product are
regular.

Note that in view of Lemma 15, any regular multicost is a regular monoid with an order.
Let S be a regular multicost. The following Algorithm 2 can be used to compute the optimal subgraph

of an S-weighted graph G by iteratively applying Algorithm 1.

Algorithm 2: Iterated Dijkstra Propagation Algorithm
Data: A regular multicost S = S1 × · · · × Sn and an S-weighted graph G.
Result: The optimal subgraph OG of G.

1 set G0 = G as an S1-weighted graph;
2 for i ∈ {1, . . . ,n} do
3 Gi = OptimalSubgraph(Gi−1) as an Si-weighted graph;
4 return OG = Gn;

Proposition 17. Let G be an S-weighted graph, where S = S1× · · · × Sn is a regular multicost. Let vr and vg be the
root and the goal of G. Algorithm 2 finds an optimal subgraph OG of G. This algorithm runs in polynomial time in the
number of vertices |V |.

Proof. Showing that the output of the algorithm is an optimal subgraph follows an argument similar to the
one in the proof of Lemma 14 and Lemma 15.

As for the complexity claim, Algorithm 2 consists of n-many runs of Algorithm 1, where n is the number
of coordinates in the weights. Since Algorithm 1 is polynomial in view of Proposition 10, so is Algorithm 2.

� �

R

G

R

G

R

G

FIGURE 5. Robot (R) on a square grid going to the goal (G); the dark gray square is an
obstacle. Middle: light gray area represents an optimal subgraph after the first iteration;
Right: an optimal subgraph after the second iteration.
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We give two examples of M-weighted graphs, M = Rmin × R+, and show the output of Algorithm 2 on
these graphs.

Example 18. Consider the graph corresponding to Figure 1. It is weighted by the regular multicost Rmin×R+.
After the first iteration, OG1 consists of all edges that do not pass through any obstacles. Indeed, any path
from the root to the goal that avoids the obstacles will have the same first coordinate of the cost. The graph
OG2 obtained on the second iteration is shown in Figure 2.

Example 19. Figure 5 gives a different illustration of Algorithm 2. The setup is similar to the one in Section 3.
A robot in the cell R needs to find a path to the goal G. The dark gray square in the center represents an
obstacle. At each step, the robot may move by one cell in each of the four directions. The cost of an edge is a
pair (a, 1), where a is the minimal distance to the obstacle or boundary. Edge costs are viewed as elements
of Rmin × R+ and are composed accordingly.

The left hand side of Figure 5 shows the initial setup. The optimal subgraph OG1 computed after the
first iteration is shown in the middle diagram. For every edge e in OG1, the opposite edge is also in OG1,
so we depict it as an undirected graph. Note that any path from the root to the goal within OG1 is one
unit of distance away from the obstacle and the boundary. Note also that the optimal subgraph in this
case contains cycles. The right diagram shows the optimal subgraph computed after the second iteration.
Unlike the previous iteration, for each edge only one direction is included in OG2. All paths from the root to
the goal within this graph have the same length and are all optimal according to the chosen cost structure.

Algorithm 2 may have three qualitatively different outcomes: i) the optimal subgraph is empty, ii) the
optimal subgraph consists of a single path between vr and vg, and iii) optimal subgraph consists of more
than one path.

The first case is possible only when the goal is not reachable from the root, and it can be detected on the
first pass of the algorithm. The second case is common when the solution is unique for at least one regular
cost monoid in the product. In this case, the loop can be terminated at the iteration corresponding to this
cost monoid. Also note that optimizations with respect to the remaining cost monoids become irrelevant.
Finally, in the third case, we are allowed to choose any path from the optimal subgraph since all paths are
optimal due to the regularity of S1, . . . ,Sn. Moreover, if one is only interested in finding an optimal path,
the last iteration of Algorithm 2 can be substituted with the classical Dijkstra or the A* algorithm.

7. SUMMARY

The focus of this paper is on extending the classical shortest path problem on directed graphs towards
using abstract algebraic costs. This extension generalizes the minimum violation planning framework by
considering additive and nonadditive characteristics of paths, for example, goal arrival time and obsta-
cle clearance, respectively. Motivated by the fact that classical graph search algorithms may fail to find
an optimal solution in the general settings of monoids with an order, we introduced the class of regular
cost monoids and presented an iterative planning algorithm that computes the optimal path for graphs
weighted in regular multicosts.

Combined with a rulebooks framework [3], an implementation of our algorithm enables complex vehicle
behaviors in unpredictable urban environments. Moreover, the established correctness proofs guarantee
that the computed path violates the least critical rule by the smallest amount possible. We continue ex-
ploring extensions of the presented algorithms in the following directions: i) algorithms for replanning in
unknown or dynamic environments and ii) further generalization of the cost structures.
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