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ABSTRACT. We give a construction of two-sided invariant metrics on free products (possibly with amalgamation)
of groups with two-sided invariant metrics and, under certain conditions, on HNN extensions of such groups. Our
approach is similar to the Graev’s construction of metrics on free groups over pointed metric spaces.

1. INTRODUCTION

1.1. History. Back in the 40’s in his seminal papers [Mar41, Mar45] A. Markov came up with a notion of
the free topological group over a completely regular (Tychonoff) space. This notion gave birth to a deep and
important area in the general theory of topological groups. We highly recommend an excellent overview of
free topological groups by O. Sipacheva [Sip05]. Later M. Graev [Gra51] gave another proof of the existence
of free topological groups over completely regular spaces. In his approach Graev starts with a pointed metric
space (X,x0, d) and defines in a canonical way a two-sided invariant metric on F

(
X \ {x0}

)
–- the free

group with bases X \ {x0}. Moreover, this metric extends the metric d on X \ {x0}. In modern terms, Graev
constructed a functor from the category of pointed metric spaces with Lipschitz maps to the category of
groups with two-sided invariant metrics and Lipschitz homomorphisms.

The topology given by the Graev metric on the free group F (X \ {x0}) is, in general, much weaker than
the free topology on F

(
X \{x0}

)
. Since the early 40’s a lot of work was done to understand the free topology

on free groups, and some of this work shed light onto properties of the Graev metrics.
Graev metrics were used to construct exotic examples of Polish groups (see [Kec94,DG07,vdDG09]). For

example, the group completion of the free group F (NN) over the Baire space with the topology given by
the Graev metric is an example of a surjectively universal group in the class of Polish groups that admit
compatible two-sided invariant metrics (see [Kec94] for the proof).

Once the notion of a free topological group is available, the next step is to construct free products. It
was made by Graev himself in [Gra50], where he proves the existence of free products in the category of
topological groups. For this he uses, in a clever and unexpected way, Graev metrics on free groups. But this
time his approach does not produce a canonical metric on the free product out of metrics on factors.

In this paper we would like to try to push Graev’s method from free groups to free products of groups with
and without amalgamation. As will be evident from the construction, the natural realm for this approach is
the category of groups with two-sided invariant metrics. To be precise, a basic object for us will be an abstract
group G with a two-sided invariant metric d on it. We recall that G will then automatically be a topological
group in the topology given by d. Topological groups that admit a compatible two-sided invariant metric
form a very restrictive subclass of the class of all the metrizable topological groups, but it includes compact
metrizable and abelian metrizable groups.

1.2. Main results. The paper roughly consists of two parts. In the first part we show the existence of free
products of groups with two-sided invariant metrics. Here is a somewhat simplified version of the main
theorem.

Theorem (Theorem 5.10). Let (G1, d1) and (G2, d2) be groups with two-sided invariant metrics. If A < Gi is a
common closed subgroup and d1|A = d2|A, then there is a two-sided invariant metric d on the free product with
amalgamation G1 ∗A G2 such that d|Gi = di. Moreover, if G1 and G2 are separable, then so is G1 ∗A G2.

Next we address the question of when a two-sided invariant metric can be extended to an HNN extension.
We obtain the following results.
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Theorem (Theorem 9.1). Let (G, d) be a tsi group, φ : A→ B be a d-isometric isomorphism between the closed
subgroups A,B. Let H be the HNN extension of (G,φ) in the abstract sense, and let t be the stable letter of the
HNN extension. If diam(A) ≤ K, then there is a tsi metric d on H such that d|G = d and d(t, e) = K.

Theorem (Theorem 9.4). Let G be a SIN metrizable group. Let φ : A → B be a topological isomorphism
between two closed subgroups. There exist a SIN metrizable group H and an element t ∈ H such that G < H is
a topological subgroup and tat−1 = φ(a) for all a ∈ A if and only if there is a compatible tsi metric d on G such
that φ becomes a d-isometric isomorphisms.

1.3. Notations. We use the following conventions. By an interval we always mean an interval of natural
numbers, there will be no intervals of reals in this paper. An interval {m,m+ 1, . . . , n} is denoted by [m,n].
For a finite set F of natural numbers m(F ) and M(F ) denote its minimal and maximal elements respectively.
For two sets F1 and F2 if M(F1) < m(F2), then we say that F1 is less than F2 and denote this by F1 < F2.

A finite set F of natural numbers can be represented uniquely as a union of its maximal sub-intervals, i.e.,
there are intervals {Ik}nk=1 such that

(i) F =
⋃
k Ik;

(ii) M(Ik) + 1 < m(Ik+1) for all k ∈ [1, n− 1].
We refer to such a decomposition of F as to the family of maximal sub-intervals.

By a tree we mean a directed graph connected as an undirected graph without undirected cycles and with
a distinguished vertex, which is called the root of the tree. For any tree T its root will be denoted by ∅. The
height on a tree T is a function HT that assigns to a vertex of the tree its graph-theoretic distance to the
root. For example HT (∅) = 0 and HT (t) = 1 for all t ∈ T \ {∅} such that (t, ∅) ∈ E(T ), where E(T ) is the
set of directed edges of T . We use the word node as a synonym for the phrase vertex of a tree. We say that
a node s ∈ T is a predecessor of t ∈ T , and denote this by s ≺ t, if there are nodes s0, . . . , sm ∈ T such that
s0 = s, sm = t and (si, si+1) ∈ E(T ).

For a metric space X its density character, i.e., the smallest cardinality of a dense subset, is denoted by
χ(X).

1.4. Acknowledgment. The author wants to thank Christian Rosendal for his tireless support and numerous
helpful and very inspiring conversations. Part of this work was done during the author’s participation in the
program on “Asymptotic geometric analysis” at the Fields Institute in the Fall, 2010 and during the trimester
on “Von Neumann algebras and ergodic theory of group actions” at the Institute of Henri Poincare in Spring,
2011. The author thanks sincerely the organizers of these programs.

The author also thanks the anonymous referee for the valuable help in improving paper’s writing.

2. TRIVIAL WORDS IN AMALGAMS

Let a family {Gλ}λ∈Λ of groups be given, where Λ is an index set. Suppose all of the groups contain a
subgroup A ⊆ Gλ, and assume that Gλ1

∩ Gλ2
= A for all λ1 6= λ2. Let G =

⋃
λ∈ΛGλ denote the union of

the groups Gλ. The identity element in any group is denoted by e, the ambient group will be evident from
the context. Let 0 be a symbol not in Λ. For g1, g2 ∈ G we set g1 ∼ g2 to denote the existence of λ ∈ Λ such
that g1, g2 ∈ Gλ. If g1 ∼ g2, we say that g1 and g2 are multipliable. We also define a relation on Λ ∪ {0} by
declaring that x, y ∈ Λ∪ {0} are in relation if and only if either x = y or at least one of x, y is 0. This relation
on Λ ∪ {0} is also denoted by ∼.

The free product of the groups Gλ with amalgamation over the subgroup A is denoted by
∐
AGλ. We

carefully distinguish words over the alphabet G from elements of the amalgam
∐
AGλ. For that we introduce

the following notation. Words(G) denotes the set of finite nonempty words over the alphabet G. The length
of a word α ∈Words(G) is denoted by |α|, the concatenation of two words α and β is denoted by α_β, and
the ith letter of α is denoted by α(i); in particular, for any α ∈Words(G)

α = α(1)_α(2)_ · · ·_α(|α|).
Two words α, β ∈ Words(G) are said to be multipliable if |α| = |β| and α(i) ∼ β(i) for all i ∈ [1, |α|]. For
technical reasons (to be concrete, for the induction argument in Proposition 2.11) we need the following
notion of a labeled word. A labeled word is a pair (α, lα), where α is a word of length n, and lα : [1, n]→ Λ∪{0}
is a function, called the label of α, such that

α(i) ∈ Gλ \A =⇒ lα(i) = λ
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for all i ∈ [1, n].

Example 2.1. Let α ∈Words(G) be any word. There is a canonical label for α given by

lα(i) =

{
0 if α(i) ∈ A;

λ if α(i) ∈ Gλ \A.

In fact, everywhere, except for the proof of Proposition 2.11, we use this canonical labeling only.

Let α be a word of length n. For a subset F ⊆ [1, n], with F = {ik}mk=1, where i1 < i2 < . . . < im, set

α[F ] = α(i1)_α(i2)_ · · ·_α(im).

We say that a subset F ⊆ [1, n] is α-multipliable if α(i) ∼ α(j) for all i, j ∈ F .
There is a natural evaluation map from the set of words Words(G) over the alphabet G to the amalgam∐
AGλ given by the multiplication of letters in the group

∐
AGλ:

α 7→ α(1) · α(2) · · ·α(|α|).

This map is denoted by a hat ̂ : Words(G)→
∐

A
Gλ.

Note that this is map is obviously surjective. For a word α ∈ Words(G) and a subset F ⊆ [1, |α|] we write
α̂[F ] instead of α̂[F ]. We hope this will not confuse the reader too much. A word α is said to be trivial if
α̂ = e.

2.1. Structure of trivial words. Elements of the group A will be special for us. Let α ∈Words(G) be a word
of length n. We say that its ith letter is outside of A if, as the name suggests, α(i) 6∈ A. The list of external
letters of α is a, possibly empty, sequence {ik}mk=1 such that

(i) ik < ik+1 for all k ∈ [1,m− 1];
(ii) α(ik) 6∈ A for all k ∈ [1,m];

(iii) α(i) 6∈ A implies i = ik for some k ∈ [1,m].
In other words, this is just the increasing list of all the letters in α that are outside of A.

Definition 2.2. Let α ∈ Words(G) be a word with the list of external letters {ik}mk=1. The word α is called
alternating if α(ik) 6∼ α(ik+1) for all k ∈ [1,m− 1]. Note that a word is always alternating if m ≤ 1. The word
α is said to be reduced if α(i) 6∼ α(i+ 1) for all i ∈ [1, |α| − 1], and it is called a reduced form of f ∈

∐
AGλ if

additionally α̂ = f .

The following is a basic fact about free products with amalgamation.

Lemma 2.3. Let α ∈Words(G) be a reduced word. If α 6= e, then α̂ 6= e.

It is worth mentioning that if A 6= {e}, then an element f ∈
∐
AGλ has many different reduced forms

(unless f ∈ G, then it has only one). But all these reduced forms have the same length, therefore it is
legitimate to talk about the length of an element f itself.

Lemma 2.4. Any element f ∈
∐
AGλ has a reduced form α ∈Words(G). Moreover, if β ∈Words(G) is another

reduced form of f , then |α| = |β| and Aα(i)A = Aβ(i)A for all i ∈ [1, |α|].

Proof. The existence of a reduced form of f ∈
∐
AGλ is obvious. Suppose α and β are both reduced forms of

f . Set
ζ = α(|α|)−1_ · · ·_α(1)−1_β(1)_ · · ·_β(|β|).

Since ζ̂ = e and ζ 6= e, by Lemma 2.3 ζ is not reduced. By assumption, α and β were reduced, therefore
α(1) ∼ β(1). We claim that α(1)−1β(1) ∈ A. Indeed, if α(1)−1β(1) 6∈ A, then the word

ξ = α(|α|)−1_ · · ·_α(1)−1 · β(1)_ · · ·_β(|β|)

is reduced, ξ̂ = e, and ξ 6= e, contradicting Lemma 2.3. So α(1)−1β(1) ∈ A, and therefore β(1) = α(1)a1 for
some a1 ∈ A and Aα(1)A = Aβ(1)A. Now set

α1 = α(2)_ · · ·_α(|α|), β1 = a1 · β(2)_ · · ·_β(|β|).
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Since α̂1 = β̂1 and α1, β1 are reduced, we can apply the same argument to get α1(1) = β1(1)a2 for some
a2 ∈ A, whence

Aα(2)A = Aα1(1)A = Aβ1(1)A = Aβ(2)A.

And we proceed by induction on |α|+ |β|. �

Lemma 2.5. Let f ∈
∐
AGλ and α, β ∈ Words(G) be given. If α is a reduced form of f , |α| = |β| and α̂ = β̂,

then β is a reduced form of f .

Proof. If β is not a reduced form of f , we perform cancellations in β and get a reduced word β1 such that
β̂1 = f and |β1| < |β|. By Lemma 2.4 we have |β1| = |α|, contradicting |β| = |α|. Hence β is reduced. �

Lemma 2.6. If α is an alternating word with a nonempty list of external letters, then α̂ 6= e.

Proof. Let {ik}mk=1 be the list of external letters of α. For k ∈ [2,m− 1] set

ξ1 = α(1) · · ·α(i2 − 1),

ξk = α(ik) · α(ik + 1) · · ·α(ik+1 − 1),

ξm = α(im) · α(im + 1) · · ·α(n),

and put
ξ = ξ1

_ · · ·_ξm.
Then ξ̂ = α̂, ξ 6= e (since ξi 6= e for all i ∈ [1,m]), and, as one easily checks, ξ is reduced. An application of
Lemma 2.3 finishes the proof. �

Lemma 2.7. If ζ is a trivial word of length n with a nonempty list of external letters, then there is an interval
I ⊆ [1, n] such that

(i) ζ̂[I] ∈ A;
(ii) I is ζ-multipliable;

(iii) ζ
(
m(I)

)
, ζ
(
M(I)

)
6∈ A.

Proof. Let {ik}mk=1 be the list of external letters. For all k ∈ [1,m] define mk and Mk by

mk = min{j ∈ [1, k] : [ij , ik] is ζ-multipliable},

Mk = max{j ∈ [k,m] : [ik, ij ] is ζ-multipliable}.
Set Ik = [mk,Mk], and note that for k, l ∈ [1,m]

Ik ∩ Il 6= ∅ =⇒ Il = Ik.

Let Ik1 , . . . , Ikp be a list of all the distinct intervals Iki . Then {Iki}
p
i=1 are pairwise disjoint. Note that

each of Iki satisfies items (ii) and (iii). To prove the lemma it is enough to show that for some i ∈ [1, p] the
corresponding Iki satisfies also item (i). Suppose this is false and ζ̂[Iki ] 6∈ A for all i ∈ [1, p]. Set ξi = ζ̂[Iki ]
and

ξ = ζ(1)_ · · ·_ζ(m(Ik1)− 1)_ξ1
_ζ(M(Ik1) + 1)_ · · ·

· · ·_ζ(m(Ik2)− 1)_ξ2
_ζ(M(Ik2) + 1)_ · · ·
· · ·_ζ(m(Ikp)− 1)_ξp

_ζ(M(Ikp) + 1)_ · · ·_ζ(n).

Then, of course, ξ̂ = ζ̂ = e and ξ is alternating by the choice of {Iki}. By Lemma 2.6 the word ξ is non-trivial,
which is a contradiction. �

Lemma 2.8. If (ζ, lζ) is a trivial labeled word of length n with a nonempty list of external letters, then there is
an interval I ⊆ [1, n] such that

(i) ζ̂[I] ∈ A;
(ii) I is ζ-multipliable;

(iii) ζ(i) 6∈ A for some i ∈ I;
(iv) if m(I) > 1, then lζ(m(I)− 1) 6= 0; if M(I) < n, then lζ(M(I) + 1) 6= 0;
(v) if ζ(m(I)) ∈ A, then lζ(m(I)) = 0; if ζ(M(I)) ∈ A, then lζ(M(I)) = 0.
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Proof. We start by applying Lemma 2.7 to the word ζ. This Lemma gives as an output an interval J ⊆ [1, n].
We will now enlarge this interval as follows. If lζ(i) = 0 for all i ∈ [1,m(J) − 1], then set jl = 1. If there is
some i < m(J) such that lζ(i) 6= 0, then let j ∈ [1,m(J)−1] be maximal such that lζ(j) 6= 0 and set jl = j+1.
Similarly, if lζ(i) = 0 for all i ∈ [M(J) + 1, n], then set jr = n. If there is some i > M(J) such that lζ(i) 6= 0,
then let j ∈ [M(J) + 1, n] be minimal such that lζ(j) 6= 0 and set jr = j − 1. Define

I = J ∪ [jl,m(J)] ∪ [M(J), jr] = [jl, jr].

We claim that I satisfies the assumptions. Note that J ⊆ I and ζ(i) ∈ A for all i ∈ I \ J , so (i), (ii) and
(iii) follow from items (i), (ii) and (iii) of Lemma 2.7. Items (iv) and (v) follow from the choice of jl and jr
and from item (iii) of Lemma 2.7. �

Definition 2.9. Let (ζ, lζ) be a trivial labeled word of length n, and let T be a tree. Suppose that to each
node t ∈ T an interval It ⊆ [1, n] is assigned. Set Rt = It \

⋃
t′≺t It′ . The tree T together with the assignment

t 7→ It is called an evaluation tree for (ζ, lζ) if for all s, t ∈ T the following holds:
(i) I∅ = [1, n];

(ii) ζ̂[It] ∈ A;
(iii) if t 6= ∅ and ζ(m(It)) ∈ A, then lζ(m(It)) = 0; if t 6= ∅ and ζ(M(It)) ∈ A, then lζ(M(It)) = 0;
(iv) if H(t) ≤ H(s) and Is ∩ It 6= ∅, then s ≺ t or s = t;
(v) if s ≺ t and t 6= ∅, then

m(It) < m(Is) ≤M(Is) < M(It);

(vi) ζ(i) ∼ ζ(j) for all i, j ∈ Rt;
An evaluation tree T is called balanced if additionally the following two conditions hold:
(vii) if T 6= {∅}, then for any t ∈ T if Rt is written as a disjoint union of maximal sub-intervals {Ij}kj=1, then

for any j there is i ∈ Ij such that lζ(i) 6= 0;
(viii) if s ≺ t, then

m(Is)− 1 ∈ Rt =⇒ lζ(m(Is)− 1) 6= 0;

M(Is) + 1 ∈ Rt =⇒ lζ(M(Is) + 1) 6= 0.

Remark 2.10. Note that if ζ ∈ Words(G) is a trivial word with the canonical label as in Example 2.1, then
item (iii) in the definition of an evaluation tree is vacuous.

Proposition 2.11. Any trivial labeled word (ζ, lζ) has a balanced evaluation tree.

Proof. We prove the proposition by induction on the cardinality of the list of external letters of ζ. Suppose
first that the list is empty, and ζ(i) ∈ A for all i ∈ [1, n]. Set Tζ = {∅} and I∅ = [1, n]. It is easy to check that
all the conditions are satisfied, and Tζ is a balanced evaluation tree for (ζ, lζ).

From now on we assume there is i ∈ [1, n] such that ζ(i) 6∈ A. Apply Lemma 2.8 to (ζ, lζ) and let I be the
interval granted by this lemma. Set λ0 = lζ(i) for some (equivalently, any) i ∈ I such that ζ(i) 6∈ A. Note
that λ0 6= 0. Let p = |I| be the length of I. If p = n, then we set Tζ = {∅} and I∅ = [1, n]. Similarly to the
base of induction this tree is a balanced evaluation tree for (ζ, lζ). From now on we assume that p < n. We
define the word ξ of length n− p+ 1 as follows. Set

ξ(i) =


ζ(i) if i < m(I)

ζ̂[I] if i = m(I)

ζ(i+ p− 1) if i > m(I).

Define the label for ξ to be

lξ(i) =


lζ(i) if i < m(I)

λ0 if i = m(I)

lζ(i+ p− 1) if i > m(I).

We claim that ∣∣{i ∈ [1, |ξ|] : ξ(i) 6∈ A}
∣∣ < ∣∣{i ∈ [1, n] : ζ(i) 6∈ A}

∣∣.
Indeed, by the construction ζ[I] has at least one letter (in fact, at least two letters) not from A.
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By inductive assumption applied to the labeled word (ξ, lξ), there is a balanced evaluation tree Tξ with
intervals Jt ⊆ [1, |ξ|] for t ∈ Tξ. Since J∅ = [1, |ξ|], there is at least one t ∈ Tξ (namely t = ∅) such that the
interval Jt contains m(I). By item (iv) there is the smallest node t0 ∈ Tξ such that m(I) ∈ Jt0 .

We define Tζ to be Tξ ∪ {s0}, where s0 is a new predecessor of t0, i. e. , s0 ≺ t0. For t ∈ Tξ set

It =


[m(Jt),M(Jt)] if M(Jt) < m(I);

[m(Jt),M(Jt) + p− 1] if m(Jt) ≤ m(I) ≤M(Jt);

[m(Jt) + p− 1,M(Jt) + p− 1] if m(I) < m(Jt);

and
Is0 = [m(I),M(I)].

We claim that such a tree Tζ with such an assignment of intervals It is a balanced evaluation tree for (ζ, lζ).
(i) Since J∅ = [1, |ξ|], it follows that I∅ = [1, n].
(ii) For any t ∈ Tξ one has ξ̂[Jt] = ζ̂[It]. Also, ζ̂[Is0 ] ∈ A by item (i) of Lemma 2.8.
(iii) Since ξ(m(I)) ∈ A and lξ(m(I)) = λ0 6= 0, by inductive hypothesis m(It) 6= m(I) and M(It) 6= m(I)

for all t ∈ Tξ \ {∅}. Therefore lξ(m(Jt)) = lζ(m(It)), lξ(M(Jt)) = lζ(M(It)) for all t ∈ Tξ \ {∅}. Thus for
t 6= s0 the item follows from the inductive hypothesis, and for t = s0 it follows from item (v) of Lemma 2.8.

(iv) Follows from the inductive hypothesis and the definition of s0.
(v) It follows from the inductive hypothesis that this item is satisfied for all s, t ∈ Tξ. We need to consider

the case s = s0, t = t0 only. By item (iii) of the definition of an evaluation tree, and since lξ(m(I)) = λ0 6= 0,
it follows that if t0 6= ∅, then m(It0) < m(Is0) and M(Is0) < M(It0).

(vi) Follows easily from the inductive hypothesis and item (ii) of Lemma 2.8.
Thus Tζ is an evaluation tree for (ζ, lζ). It remains to check that it is balanced.
(vii) For t ∈ Tξ \ {t0} the maximal sub-intervals of Jt \

⋃
s≺t Js naturally correspond to the maximal

sub-intervals of It \
⋃
s≺t Is, and hence for such a t the item follows from the inductive hypothesis. For t = s0

the item follows from item (iii) of Lemma 2.8. The remaining case t = t0 follows from item (iv) of Lemma
2.8.

(viii) Again, for s 6= s0 this item follows from the inductive hypothesis and for s = s0, t = t0 follows from
item (iv) of Lemma 2.8. �

If ζ is just a word with no labeling, then we canonically associate a label to it by declaring lζ(i) = 0 if and
only if ζ(i) ∈ A (as in Example 2.1).

From now on we view all trivial words as labeled words with the canonical labeling.

Definition 2.12. A trivial word ζ ∈Words(G) of length n is called slim if there exists an evaluation tree Tζ
such that ζ̂[It] = e for all t ∈ Tζ; such a tree is then called a slim evaluation tree. We say that ζ is simple if it
is slim and ζ(i) ∈ A implies ζ(i) = e for all i ∈ [1, n].

Definition 2.13. Let f ∈
∐
AGλ. A pair of words (α, ζ) is called an f -pair if |α| = |ζ| and α̂ = f , ζ̂ = e. An

f -pair (α, ζ) is said to be a multipliable f -pair if α and ζ are multipliable. An f -pair (α, ζ) is called slim if it is
multipliable and ζ is slim. It is called simple if it is multipliable and ζ is simple.

For a multipliable pair (α, β) of length n we define the notions of right and left transfers. Let a ∈ A and
i ∈ [1, n− 1] be given. The right (a, i)-transfer of (α, β) is the pair RTran(α, β; a, i) = (γ, δ) defined as follows:

(γ(j), δ(j)) =


(α(j), β(j)) if j 6∈ {i, i+ 1};
(α(i)a−1, β(i)a−1) if j = i;

(aα(i+ 1), aβ(i+ 1)) if j = i+ 1.

For a ∈ A and i ∈ [2, n] the left (a, i)-transfer of (α, β) is denoted by LTran(α, β; a, i) = (γ, δ) and is defined
as

(γ(j), δ(j)) =


(α(j), β(j)) if j 6∈ {i− 1, i};
(a−1α(i), a−1β(i)) if j = i;

(α(i− 1)a, β(i− 1)a) if j = i− 1.

We will typically have specific sequences of transfers, so it is convenient to make the following definition.
Let (α, ζ) be a multipliable pair of words of length n. In all the applications ζ will be a trivial word. Let
{Ik}mk=1 be a sequence of intervals such that:
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(1) Ik ⊆ [1, n];
(2) Ik < Ik+1 for all k ∈ [1,m− 1];
(3) ζ̂[Ik] ∈ A for all k ∈ [1,m];
(4) M(Im) < n.

Such a sequence is called right transfer admissible. If together with items (1)− (3) the following is satisfied

(4′) m(I1) > 1,

then the sequence {Ik}mk=1 is called left transfer admissible.
Let {Ik}mk=1 be a right transfer admissible sequence of intervals. Define inductively words (βk, ξk) by

setting (β0, ξ0) = (α, ζ) and

(βk+1, ξk+1) = RTran(βk, ξk; ξ̂k[Ik+1],M(Ik+1)).

We have to show that the right-hand side is well-defined, i.e., that ξ̂k[Ik+1] ∈ A. For the first step of the
construction we have ξ̂0[I1] = ζ̂[I1] ∈ A, because the sequence is right transfer admissible. Suppose we have
proved that ξ̂k−1[Ik] ∈ A. There are two cases: either M(Ik) + 1 = m(Ik+1), and then

ξ̂k[Ik+1] = (ξ̂k−1[Ik]) · ζ̂[Ik+1],

or M(Ik) + 1 < m(Ik+1), and then ξ̂k[Ik+1] = ζ̂[Ik+1]. In both cases we get ξ̂k[Ik+1] ∈ A.
By definition, the right {Ik}-transfer of (α, ζ) is the pair (βm, ξm).
The left transfer is defined similarly, but with one extra change: we apply left transfers in the decreasing

order from Im to I1. Here is a formal definition. For a left admissible sequence of intervals {Ik}mk=1 set
inductively (β0, ξ0) = (α, ζ) and

(βk+1, ξk+1) = LTran(βk, ξk; ξ̂k[Im−k],m(Im−k)).

Similarly to the case of the right transfer one shows that the right-hand side in the above construction is
well-defined. By definition, the left {Ik}-transfer of (α, ζ) is the pair (βm, ξm).

This notion of transfer, though a bit technical, will be crucial in some reductions in the next section. The
following lemma establishes basic properties of the transfer operation with respect to the earlier notion of
the evaluation tree.

Lemma 2.14. Let (α, ζ) be a multipliable f -pair of length n and let Tζ be a [balanced] evaluation tree for ζ. Let
{Ik}mk=1 be a right [left] transfer admissible sequence of intervals. Let (β, ξ) be the right [left] {Ik}-transfer of
(α, ζ). Then

(i) |β| = n = |ξ|;
(ii) (β, ξ) is a multipliable f -pair;

(iii) Tζ is a [balanced] evaluation tree for ξ.
(iv) ξ(i) = ζ(i) for all i 6∈ {M(Ik),M(Ik)+1 : k ∈ [1,m]} for the right transfer and for all i 6∈ {m(Ik),m(Ik)−

1 : k ∈ [1,m]} in the case of the left transfer;
(v) ξ̂[Ik] = e for all k ∈ [1,m].

Proof. Items (i), (ii), and (iv) are trivial; item (iii) follows easily from the observation that ξ(i) ∈ A if and
only if ζ(i) ∈ A. For item (v) let ξk be as in the definition of the {Ik}-transfer. Suppose for definiteness that
we are in the case of the right transfer. Then ξ̂k[Ik] = e by construction and also ξk+1[Ij ] = ξk[Ij ] for all
j ∈ [1, k]. The lemma follows. �

We will later need another operation on words, we call it symmetrization. Here is the definition.

Definition 2.15. Let (α, ζ) be a slim f -pair with a slim evaluation tree Tζ . Let t ∈ Tζ and {ik}mk=1 ⊆ Rt be a
list such that

(i) ik < ik+1 for k ∈ [1,m− 1];
(ii) if ζ(i) 6= e for some i ∈ Rt, then i = ik for some k ∈ [1,m];

(iii) α(ik) ∼ α(il) for all k, l ∈ [1,m].
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Such a list is called symmetrization admissible. For j0 ∈ {ik}mk=1 let k0 be such that j0 = ik0 and define a
symmetrization Sym(α, ζ; j0, {ik}mk=1) of ζ to be the word ξ such that

ξ(i) =


ζ(i) if i 6= ip for all p ∈ [1,m];

α(i) if i ∈ {ik}mk=1 \ {j0};
α(ik0−1)−1 . . . α(i1)−1 · α(im)−1 . . . α(ik0+1)−1 if i = j0.

If m = 1, the above definition does not make sense, so we set that in this case Sym(α, ζ; i1, i1) = ζ.

Lemma 2.16. Let (α, ζ) be a slim f -pair with a slim evaluation tree Tζ . Let t ∈ Tζ , and let {ik}mk=1 ⊆ Rt be
a symmetrization admissible list. Fix some j0 ∈ {ik}mk=1. If ξ is the symmetrization Sym(α, ζ; j0, {ik}mk=1) of ζ,
then (α, ξ) is a slim f -pair and Tζ is a slim evaluation tree for ξ with the same assignment of intervals s 7→ Is.

Proof. The only non-trivial part in the lemma is to show that ξ̂[It] = e. This follows from the facts that
ζ̂[Is] = e for all s ≺ t (because Tζ is slim) and that ζ(i) = e for all i ∈ Rt \ {i1, . . . , im} (by the definition of
the symmetrization admissible list). �

3. GROUPS WITH TWO-SIDED INVARIANT METRICS

In this section we would like to recall some facts from the theory of groups with two-sided invariant
metrics. The reader can consult [Gao09] for the details.

Definition 3.1. A metric d on a group G is called two-sided invariant if

d(gf1, gf2) = d(f1, f2) = d(f1g, f2g)

for all g, f1, f2 ∈ G. A tsi group is a pair (G, d), where G is a group and d is a two-sided invariant metric on
G; tsi stands for two-sided invariant.

Proposition 3.2. If (G, d) is a tsi group, then G is a topological group in the topology of the metric d.

Proposition 3.3. Let d be a left invariant metric on the group G.
(i) If for all g1, g2, f1, f2 ∈ G

d(g1g2, f1f2) ≤ d(g1, f1) + d(g2, f2),

then d is two-sided invariant;
(ii) If d is two-sided invariant, then for all g1, . . . , gk, f1, . . . , fk ∈ G

d(g1 · · · gk, f1 · · · fk) ≤
k∑
i=1

d(gi, fi).

Because of Proposition 3.2 we choose to speak not about topological groups that admit a compatible
two-sided invariant metric, but rather about abstract groups with a two-sided invariant metric. Note that the
class of metrizable groups that admit a compatible two-sided invariant metric is very small, but it includes
two important subclasses: abelian and compact metrizable groups.

The class of tsi groups is closed under taking factors by closed normal subgroups, and, moreover, there is
a canonical metric on the factor.

Proposition 3.4. If (G, d) is a tsi group and N < G is a closed normal subgroup, then the function

d0(g1N, g2N) = inf{d(g1h1, g2h2) : h1, h2 ∈ N}
is a two-sided invariant metric on the factor group G/N and the factor map π : G → G/N is a 1-Lipschitz
surjection from (G, d) onto (G/N, d0).

The metric d0 is called the factor metric.

Proposition 3.5. Let (G, d) be a tsi group. Let (G, d) be the completion of G as a metric space; the extension
of the metric d on G to the completion G is again denoted by d. There is a unique extension of group operation
from G to G. This extension turns (G, d) into a tsi group.

This proposition states that for tsi groups metric and group completions are the same.
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4. GRAEV METRIC GROUPS

Before going into the details of the construction of Graev metrics on free products we would like to
recall the definition of the Graev metrics on free groups. The reader may consult [Gra51], [DG07], [Gao09]
or [Kec94] for the details and proofs.

Classically one starts with a pointed metric space (X, e, d), where d is a metric and e ∈ X is a distinguished
point. Take another copy of this space, denote it by (X−1, d), and its elements are the formal inverses of the
elements in X with the agreement e−1 = e and X ∩ X−1 = {e}. Then X−1 is also a metric space and we
can amalgamate (X, d) and (X−1, d) over the point e. Denote the resulting space by (X, e, d). Equivalently,
X = X ∪X−1, and for all x, y ∈ X

d(x−1, y−1) = d(x, y), d(x, y−1) = d(x, e) + d(e, y).

With the set X we associate two objects: the set of nonempty words Words(X) over the alphabet X and
the free group F (X) over the basis X. There is a small issue with the second object. We want e to be the
identity element of this group rather than an element of the basis. In other words, we formally have to write
F (X \ {e}), but we adopt the convention that given a pointed metric space (X, e, d), in F (X) the letter e ∈ X
is interpreted as the identity element. The inverse operation in F (X) naturally extends the inverse operation
on X. We have a natural map ̂ : Words(X)→ F (X),

for u ∈Words(X) its image û is just the reduced form of u. For a word u ∈Words(X) its length is denoted
by |u| and its ith letter is denoted by u(i). For two words u, v ∈Words(X) of the same length n we define a
function

ρ(u, v) =

n∑
i=1

d(u(i), v(i)).

And finally, we define a metric d by

d(f, g) = inf{ρ(u, v) : |u| = |v| and û = f, v̂ = g}.

A theorem of Graev [Gra51] states that d is indeed a two-sided invariant metric on F (X), and moreover, it
extends the metric d on the amalgam X. It is straightforward to see that d is a two-sided invariant pseudo-
metric and the hard part of the Graev’s theorem is to show that it assigns a non-zero distance to distinct
elements. Graev showed this by proving some restrictions on u and v in the infimum in the definition of d.
The effective formula for the Graev metric was first suggested by O. Sipacheva and V. Uspenskij in [SU87] and
later, but independently, a similar result was obtained in [DG07] by L. Ding and S. Gao. In our presentation
we follow [DG07].

Definition 4.1. Let I be an interval of natural numbers. A bijection θ : I → I is called a match if
(i) θ ◦ θ = id;

(ii) there are no i, j ∈ I such that i < j < θ(i) < θ(j).

Definition 4.2. Let w ∈Words(X) be a word of length n, let θ be a match on [1, n]. A word wθ has length n
and is defined as

wθ(i) =


e if θ(i) = i;

w(i) if θ(i) > i;

w
(
θ(i)

)−1
if θ(i) < i.

It is not hard to check that for any word w and any match θ on [1, |w|] the word wθ is trivial, i.e. ŵθ = e.

Theorem 4.3 (Sipacheva–Uspenskij, Ding–Gao). If f ∈ F (X) and w ∈ Words(X) is the reduced form of f ,
then

d(f, e) = min
{
ρ
(
w,wθ

)
: θ is a match on [1, |w|]

}
.

Here are some of the properties of the Graev metrics. They are easy consequences of the definition of the
Graev metric and Theorem 4.3.

Proposition 4.4. Let (X, e, d) be a pointed metric space, and let d be the Graev metric on F (X).
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(i) If (T, dT ) is a tsi group and φ : X → T is a K-Lipschitz map such that φ(e) = e, then this map extends
uniquely to a K-Lipschitz homomorphism φ : F (X)→ T .

(ii) If Y ⊆ X, e ∈ Y is a pointed subspace ofX with the induced metric, then the natural embedding i : Y → X
extends uniquely to an isometric embedding

i : F (Y )→ F (X).

Moreover, if Y is closed in X, then F (Y ) is closed in F (X).
(iii) If δ is any tsi metric F (X) that extends d, i.e., if d(x1, x2) = δ(x1, x2) for all x1, x2 ∈ X, then δ(u1, u2) ≤

d(u1, u2) for all u1, u2 ∈ F (X). In other words, d is maximal among all the tsi metrics that extend d.
(iv) If X 6= {e}, then

χ(F (X)) = max{ℵ0, χ(X)}.
In particular, if X is separable, then so is F (X).

4.1. Free groups over metric groups. In this subsection we prove a technical result that will be used later
in Section 6.

Suppose X is itself a group and e ∈ X is the identity element of that group. Let ◦ denote the multiplication
operation on X, and let x† denote the group inverse of an element x ∈ X. Suppose also that d is a two sided
invariant metric on X. For u ∈Words(X) define a word u] by

u](i) =

{
u(i) if u(i) ∈ X;

(u(i)−1)† if u(i) ∈ X−1.

For h ∈ F (X) let h] = ŵ], where w is the reduced form of h.

Proposition 4.5. Let f ∈ F (X), and let w be the reduced form of f . If w ∈Words(X), then for any h ∈ F (X)

d(fh, e) ≥ d(fh], e).

Proof. Suppose w ∈ Words(X) and fix an h ∈ F (X). Let u ∈ Words(X) be the reduced form of h. It is
enough to show that

ρ
(
w_u,

(
w_u

)θ) ≥ ρ(w_u], (w_u])θ)
for any match θ on [1, |w|+ |u|]. This follows from the following inequalities:

• if x, y ∈ X−1, then by the two-sided invariance of the metric d

d(x, y) = d(x−1, y−1) = d
(
(x−1)†, (y−1)†

)
;

• if x ∈ X−1 and y ∈ X, then by the two-sided invariance of the metric d

d(x, y) = d(x, e) + d(e, y) = d(x−1, e) + d(e, y) =

d
(
(x−1)†, e

)
+ d(e, y) ≥ d

(
(x−1)†, y

)
.

Thus d(fh, e) ≥ d(fh], e). �

5. METRICS ON AMALGAMS

5.1. Basic set up. Let (Gλ, dλ) be a family of tsi groups, A < Gλ be a common closed subgroup, Gλ1
∩Gλ2

=
A, and assume additionally that the metrics {dλ} agree on A:

dλ1
(a1, a2) = dλ2

(a1, a2) for all a1, a2 ∈ A and all λ1, λ2 ∈ Λ.

Our main goal is to define a metric on the free product of Gλ with amalgamation over A that extends all the
metrics dλ. It will be an analog of the Graev metrics on free groups.

First of all, let d denote the amalgam metric on G =
⋃
λGλ given by

d(f1, f2) =

{
dλ(f1, f2) if f1, f2 ∈ Gλ for some λ ∈ Λ;
inf
a∈A

{
dλ1

(f1, a) + dλ2
(a, f2)

}
if f1 ∈ Gλ1

, f2 ∈ Gλ2
for λ1 6= λ2.

If α1 and α2 are two words in Words(G) of the same length n, then the value ρ(α1, α2) is defined by

ρ(α1, α2) =

n∑
i=1

d
(
α1(i), α2(i)

)
.
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Finally, for elements f1, f2 ∈
∐
AGλ the Graev metric on the free product with amalgamation

∐
AGλ is

defined as
d(f1, f2) = inf

{
ρ(α1, α2) : |α1| = |α2| and α̂i = fi

}
.

Lemma 5.1. d is a tsi pseudo-metric.

Proof. It is obvious that d is non-negative, symmetric and attains value zero on the diagonal. We show that it
is two-sided invariant. Let f1, f2, h ∈

∐
AGλ be given. Let γ ∈Words(G) be any word such that γ̂ = h. For

any α1, α2 ∈Words(G) that have the same length and are such that α̂i = fi we get

ρ(α1, α2) = ρ(γ_α1, γ
_α2),

and therefore d(hf1, hf2) ≤ d(f1, f2). But similarly, if β1, β2 are of the same length and β̂i = hfi, then

ρ(β1, β2) = ρ(γ−1_β1, γ
−1_β2),

where γ−1 = γ(|γ|)−1_ . . ._γ(1)−1. Hence d(f1, f2) = d(hf1, hf2), i.e., d is left invariant. Right invariance
is shown similarly.

We also need to check the triangle inequality. By the two-sided invariance triangle inequality is equivalent
to

d(f1f2, e) ≤ d(f1, e) + d(f2, e) for all f1, f2 ∈
∐

A
Gλ.

The latter follows immediately from the observation that if α̂i = fi, |αi| = |ζi|, and ζ̂1 = e = ζ̂2, then
α̂1

_α2 = f1f2, ζ̂1_ζ2 = e, and also

ρ(α1
_α2, ζ1

_ζ2) = ρ(α1, ζ1) + ρ(α2, ζ2). �

We will show eventually that, in fact, d is not only a pseudo-metric, but a genuine metric. This will take us
a while though.

It will be convenient for us to talk about norms rather than about metrics. For this we set N(f) = d(f, e).
Then N is a tsi pseudo-norm on G (again, it will turn out to be a norm). Note that d is a metric if and only if
N is a norm, i. e., if and only if N(f) = 0 implies f = e.

5.2. Reductions. We start a series of reductions and will gradually simplify the structure of α in the definition
of the pseudo-norm N.

Using the notion of an f -pair the definition of N can be rewritten as

N(f) = inf
{
ρ(α, ζ) : (α, ζ) is an f -pair}.

Lemma 5.2. For all f ∈
∐
AGλ

N(f) = inf
{
ρ(α, ζ) : (α, ζ) is a multipliable f -pair}.

Proof. Fix an f ∈
∐
AGλ. We need to show that for any f -pair (α, ζ) and for any ε > 0 there is a multipliable

f -pair (β, ξ) such that
ρ(β, ξ) ≤ ρ(α, ζ) + ε.

Take an f -pair (α, ζ) and fix an ε > 0. Let n be the length of α. For an i ∈ [1, n] we define a pair of words βi, ξi
as follows: if α(i) ∼ ζ(i), then βi = α(i), ξi = ζ(i); if α(i) 6∼ ζ(i), then βi = α(i)_e and ξi = ai

_a−1
i ζ(i),

where ai ∈ A is any element such that

d
(
α(i), ζ(i)

)
+
ε

n
≥ d
(
α(i), ai

)
+ d
(
ai, ζ(i)

)
,

which exists by the definition of the amalgam metric d. Then

ρ(βi, ξi) ≤ ρ
(
α(i), ζ(i)

)
+
ε

n
for all i.

Set β = β1
_ . . ._βn, ξ = ξ1

_ . . ._ξn. It is now easy to see that (β, ξ) is a multipliable f -pair and that indeed

ρ(β, ξ) ≤ ρ(α, ζ) + ε. �

The next lemma follows immediately from the two-sided invariance of the metrics dλ.

Lemma 5.3. Let (α, ζ) be a multipliable pair of length n, and let {Ik}mk=1 be a right [left] transfer admissible
sequence of intervals. If (β, ξ) is the right [left] {Ik}mk=1-transfer of the pair (α, ζ), then

ρ(α, ζ) = ρ(β, ξ).
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Lemma 5.4. Let (α, ζ) be a multipliable f -pair, and let Tζ be an evaluation tree for ζ. There is a slim f -pair
(β, ξ) such that

(i) |α| = |β|;
(ii) ρ(α, ζ) = ρ(β, ξ);

(iii) Tζ is a slim evaluation tree for ξ;
(iv) if Tζ is a balanced evaluation tree for ζ, then it is also balanced as an evaluation tree for ξ.

Proof. Let (α, ζ) be a multipliable f -pair, let Tζ be an evaluation tree for ζ, and let HTζ denote the height of
the tree Tζ . We do an inductive construction of words (βk, ξk) for k = 0, . . . ,HTζ and claim that (βHTζ , ξHTζ )

is as desired. We start by setting (β0, ξ0) = (α, ζ).
Suppose the pair (βk, ξk) has been constructed. Let t1, . . . , tm ∈ T be all the nodes at the level HTζ − k

listed in the increasing order: M(Iti) < m(Iti+1
). We define a relation ∼ on [1,m] by setting k ∼ l if for any

i ∈ [m(Itk ∪ Itl),M(Itk ∪ Itl)] there is j ∈ [1,m] such that i ∈ Itj . It is straightforward to check that ∼ is an
equivalence relation on [1,m]. Note that any ∼-equivalence class is a sub-interval of [1,m]. Let J1, . . . , Jp be
the increasing list of all the distinct equivalence classes, J1 < J2 < . . . < Jp.

Case 1. p ≥ 2. Set (γ, ω) to be the right {Itr}
M(Jp−1)
r=1 -transfer of (βk, ξk), and define (βk+1, ξk+1) to be the

left {Itr}mr=m(Jp)-transfer of (γ, ω).

Case 2. p = 1. Suppose there is only one equivalence class. We have a trichotomy:
• if M(IM(J1)) < n, then set

(βk+1, ξk+1) = the right {Itr}mr=1-transfer of (βk, ξk);

• if M(IM(J1)) = n, but m(Im(J1)) > 1, then set

(βk+1, ξk+1) = the left {Itr}mr=1-transfer of (βk, ξk);

• if m(Im(J1)) = 1 and M(IM(J1)) = n, then set

(βk+1, ξk+1) = the right {Itr}m−1
r=1 -transfer of (βk, ξk).

Notice the difference from the first case: the last element of the transfer sequence is r = m− 1, not
m.

Denote (βHTζ , ξHTζ ) simply by (β, ξ). We claim that this pair satisfies all the requirements. Since (β, ξ) is
obtained by the sequence of transfers, items (i) and (iv) follow from Lemma 2.14. Item (ii) is a consequence
of Lemma 5.3.

It remains to check that ξ̂[It] = e for all t ∈ Tζ . By item (v) of Lemma 2.14 ξ̂k+1[It] = e for all t ∈ Tζ
such that HTζ (t) = HTζ − k. Therefore it is enough to show that ξ̂k+1[It] = ξ̂k[It] for all t ∈ Tζ such that
HTζ (t) > HTζ −k. This follows from item (iv) of Lemma 2.14 and item (v) of the definition of the evaluation
tree. �

Lemma 5.5. Let (α, ζ) be a slim f -pair, and let Tζ be a slim balanced evaluation tree for ζ. There is a simple
f -pair (β, ξ) such that

(i) |α| = |β|;
(ii) ρ(α, ζ) = ρ(β, ξ);

(iii) Tζ is a slim balanced evaluation tree for ξ.

Proof. Let (α, ζ) be a slim f -pair of length n, and let Tζ be a slim evaluation tree for ζ. Sets {Rt}t∈Tζ form
a partition of [1, n]. For t ∈ T let J t1, . . . , J

t
qt be the maximal sub-intervals of Rt. Let {ik}mk=1 be the list of

external letters in ζ. Set
F (J ti ) = {ik} ∩ J ti .

Assume first that F (J ti ) 6= ∅ for all t ∈ Tζ and all i ∈ [1, qt]. Note that by item (vii) of the definition of the
balanced evaluation tree this is the case once T 6= {∅}. Set

U =
( ⋃
t∈Tζ

qt⋃
i=1

[m(J ti ),M(F (J ti ))]
)
\ {ik}mk=1,
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V =
( ⋃
t∈Tζ

qt⋃
i=1

[M(F (J ti )),M(J ti )]
)
\ {ik}mk=1.

Now write U = {uk}puk=1, V = {vk}pvk=1 as increasing sequences. Set (γ, ω) to be the right {uk}-transfer of the
pair (α, ζ) and (β, ξ) to be the left {vk}-transfer of (γ, ω) (we view uk ’s and vk ’s as intervals that consist of a
single point). We claim that the pair (β, ξ) satisfies all the assumptions of the lemma.

Item (i) follows from item (i) of Lemma 2.14. The latter lemma also implies that Tζ is a balanced
evaluation tree for ξ. Item (ii) follows from Lemma 5.3.

(iii). We show that Tζ is a slim evaluation tree for ξ. Let t ∈ Tζ . Since Tζ was slim for ζ, we have ζ̂[It] = e.
Note that if uk ∈ U ∩Rt, then uk + 1 ∈ Rt (by the construction of U ). Similarly for vk ∈ V , vk ∈ Rt implies
vk − 1 ∈ Rt. It now follows from item (iv) of Lemma 2.14 that ξ̂[It] = ζ̂[It] = e and therefore Tζ is slim.

Finally, the simplicity of (β, ξ) is a consequence of items (iv) and (v) of Lemma 2.14.
So have we proved the lemma under the assumption that F (J ti ) 6= ∅ for all t ∈ Tζ and all i ∈ [1, qt].

Suppose this assumption was false. By item (vii) of the definition of the balanced evaluation tree we get
Tζ = {∅} and F (I∅) = ∅. Therefore ζ(i) ∈ A for all i. Set (β, ξ) to be the right (i)n−1

i=1 -transfer of (α, ζ). Then
ξ = e_ . . ._e and obviously (β, ξ) is a simple f -pair of the same length and Tζ = {∅} is a simple balanced
evaluation tree for ξ. �

Lemma 5.6. Let (α, ζ) be a slim f -pair of length n with a slim evaluation tree Tζ . Let t ∈ Tζ be given and let
{ik}mk=1 ⊆ Rt be a symmetrization admissible list. If ξ = Sym(α, ζ; i′, {ik}) for some i′ ∈ {ik}mk=1, then

ρ(α, ζ) ≥ ρ(α, ξ).

Proof. Since ζ is slim, we have
ζ(i1) · ζ(i2) · · · ζ(im) = e,

and by Proposition 3.3 we get

d(α(i1) · · ·α(im), e) = d(α(i1) · · ·α(im), ζ(i1) · · · ζ(im)) ≤
m∑
j=1

d(α(ij), ζ(ij)).

If i′ = ik, then

ρ(α, ζ)− ρ(α, ξ) =
m∑
j=1

d
(
α(ij), ζ(ij)

)
− d
(
α(ik), α(ik−1)−1 · · ·α(i1)−1 · α(im)−1 · · ·α(ik+1)−1

)
=

m∑
j=1

d
(
α(ij), ζ(ij)

)
− d
(
α(i1) · · ·α(im), e

)
≥ 0.

This proves the lemma. �

Definition 5.7. A simple f -pair (α, ζ) is called simple reduced if α is a reduced form of f .

Lemma 5.8. For any f ∈
∐
AGλ

N(f) = inf{ρ(α, ζ) : (α, ζ) is a simple reduced f -pair}.

Proof. In view of Lemmas 5.2, 5.4, and 5.5, it is enough to show that for any simple f -pair (α, ζ) there is a
simple reduced f -pair (β, ξ) such that ρ(α, ζ) ≥ ρ(β, ξ). Let (α, ζ) be a simple f -pair. Let (γ, ω) be a simple
f -pair of the smallest length among all simple f -pairs (γ0, ω0) such that

ρ(α, ζ) ≥ ρ(γ0, ω0).

It is enough to show that γ is a reduced form of f . If |γ| = 1 this is obvious. Suppose |γ| = n ≥ 2.
Claim 1. There is no j ∈ [1, n] such that γ(j) ∈ A. Suppose this is false and there is such a j ∈ [1, n].

Case 1. ω(j) ∈ A. (In fact, since (γ, ω) is simple, ω(j) ∈ A implies ω(j) = e, but this is not used here.)
Suppose j < n. Since γ(j) ∈ A, ω(j) ∈ A and γ(j + 1) ∼ ω(j + 1), we have γ(j) · γ(j + 1) ∼ ω(j) · ω(j + 1).
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Define (γ1, ω1) by

γ1(i) =


γ(i) if i < j;

γ(j) · γ(j + 1) if i = j;

γ(i+ 1) if i > j;

ω1(i) =


ω(i) if i < j;

ω(j) · ω(j + 1) if i = j;

ω(i+ 1) if i > j.

It is easy to see that |γ1| = |γ| − 1 and (γ1, ω1) is a multipliable f -pair. Moreover, since by the two-sided
invariance

d(γ(j)γ(j + 1), ω(j)ω(j + 1)) ≤ d(γ(j), ω(j)) + d(γ(j + 1), ω(j + 1)),

we also have ρ(γ, ω) ≥ ρ(γ1, ω1). Since γ1, ω1 is a multipliable f -pair, by Lemmas 5.4 and 5.5 there is a simple
f -pair (γ0, ω0) such that |γ0| = |γ1| = n− 1 and ρ(γ0, ω0) = ρ(γ1, ω1). This contradicts the choice of (γ, ω).

If j = n, define

γ1(i) =


γ(i) if i < j − 1;

γ(j − 1) · γ(j) if i = j − 1;

γ(i+ 1) if i > j − 1;

ω1(i) =


ω(i) if i < j − 1;

ω(j − 1) · ω(j) if i = j − 1;

ω(i+ 1) if i > j − 1,

and proceed as before.

Case 2. ω(j) 6∈ A. Let Tω be a slim evaluation tree for ω. Let t ∈ Tω be such that j ∈ Rt. Let {ik}mk=1 be
the list of external letters in Rt; this list is symmetrization admissible. Let j0 ∈ {ik}mk=1 be any such that
j0 6= j, set ω2 = Sym(γ, ω; j0, {ik}). By Lemma 2.16 (γ, ω2) is a slim f -pair and ω2(j) = γ(j) ∈ A. And we
can decrease the length of the pair (γ, ω2) as in the previous case. This proves the case and the claim.

Claim 2. There is no j ∈ [1, n − 1] such that γ(j) ∼ γ(j + 1). Suppose this is false and there is such a
j ∈ [1, n− 1]. Note that by the previous claim γ(j) 6∈ A and γ(j + 1) 6∈ A. Hence there is λ0 ∈ Λ such that

γ(j), γ(j + 1), ω(j), ω(j + 1) ∈ Gλ0
.

Therefore γ(j) ·γ(j+1) ∼ ω(j) ·ω(j+1). The rest of the proof is similar to what we have done in the previous
claim. Define (γ3, ω3) by

γ3(i) =


γ(i) if i < j

γ(j) · γ(j + 1) if i = j

γ(i+ 1) if i > j

ω3(i) =


ω(i) if i < j

ω(j) · ω(j + 1) if i = j

ω(i+ 1) if i > j

Then |γ3| = |γ| − 1, (γ3, ω3) is a multipliable f -pair, and ρ(γ, ω) ≥ ρ(γ1, ω1). By Lemmas 5.4 and 5.5 there is
a simple f -pair (γ0, ω0) such that |γ0| = |γ3| and ρ(γ3, ω3) = ρ(γ0, ω0), contradicting the choice of (γ, ω). The
claim is proved.

From the second claim it follows that γ(j) 6∼ γ(j + 1) for any j ∈ [1, n− 1] and therefore γ is reduced. �

Proposition 5.9. Let f ∈
∐
AGλ be an element of length n. If α is a reduced form of f , then

N(f) ≥ min{d(α(i), A) : i ∈ [1, n]}.
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Proof. Fix a reduced form α of f , the word α has length n. By Lemma 5.8 it remains to show that for any
simple reduced f -pair (β, ξ) we have

ρ(β, ξ) ≥ min{d(α(i), A) : i ∈ [1, n]}.
Let (β, ξ) be a simple reduced f -pair. Note that by Lemma 2.4 the length of β is n. Let Tξ be a slim evaluation
tree for ξ, and let t ∈ Tξ be a leaf (i.e., a node with no predecessors). Since It is ξ-multipliable and (β, ξ)
is a simple reduced pair, it follows that there is i0 ∈ It such that ξ(i0) = e (in fact, either ξ(m(It)) = e
or ξ(m(It) + 1) = e). By Lemma 2.4 there are a1, a2 ∈ A such that a1α(i0)a2 = β(i0). By the two-sided
invariance we get

ρ(β, ξ) ≥ d(β(i0), e) = d(a1α(i0)a2, e) = d(α(i0), a−1
1 a−1

2 ) ≥ d(α(i0), A). �

We are now ready to prove that the pseudo-metric d is, in fact, a metric.

Theorem 5.10. If d is (as before) the pseudo-metric on
∐
AGλ associated with the pseudo-norm N, d(f, e) =

N(f), then
(i) d is a two-sided invariant metric on

∐
AGλ;

(ii) d extends d.

Proof. (i) By Proposition 5.1 we know that d is a tsi pseudo-metric. It only remains to show that d(f, e) = 0
implies f = e. Let f ∈

∐
AGλ be such that d(f, e) = 0, and let α be a reduced form of f . Suppose first that

|α| ≥ 2 and therefore α(i) 6∈ A for all i by the definition of the reduced form. By Proposition 5.9 and since A
is closed in Gλ for all λ, we have

d(f, e) ≥ min
{
d(α(i), A) : i ∈ [1, |α|]

}
> 0.

Suppose now |α| = 1 and therefore α = f , f ∈ G, and the reduced form of f is unique. By Lemma 5.8 the
distance d(f, e) is given as the infimum over all simple reduced f -pairs, but there is only one such pair: (f, e),
where f is viewed as a letter in G. Hence d(f, e) = 0 implies f = e.

(ii) Fix g1, g2 ∈ G and suppose first that g1 6∼ g2. Let (α, ζ) be a simple reduced g1g
−1
2 -pair. We claim that

there is a ∈ A such that g1a = α(1), and a−1g−1
2 = α(2). Indeed,

α(1)α(2) = g1g
−1
2 =⇒ g2g

−1
1 α(1)α(2) = e =⇒ g−1

1 α(1) ∈ A =⇒
∃a ∈ A such that α(1) = g1a, and α(2) = a−1g−1

2 .

Moreover, since g1 6∼ g2 and since (α, ζ) is multipliable, we get ζ = e_e and thus

d(g1, g2) = d(g1g
−1
2 , e) = inf{ρ(g1a

_a−1g−1
2 , e_e) : a ∈ A} =

inf{d(g1, a
−1) + d(a−1, g2) : a ∈ A} = d(g1, g2).

If g1 ∼ g2, then there is only one simple reduced g1g
−1
2 -pair, namely (g1g

−1, e) and the item follows. �

6. PROPERTIES OF GRAEV METRICS

Theorem 5.10 allows us to make the following definition: the metric d constructed in the previous section
is called the Graev metric on the free product of groups (Gλ, dλ) with amalgamation over A.

Theorem 4.3 implies that the Graev metric on a free group is, in some sense, computable, that is if one can
compute the metric on the base, then to find the norm of an element f in the free group one has to calculate
the function ρ for only finitely many trivial words, moreover those words are constructable from the letters
of f . For the case of free products without amalgamation, i.e., when A = {e}, we have a similar result (see
Corollary 6.4 below).

Definition 6.1. Let (α, ζ) be a slim f -pair with a slim evaluation tree Tζ . The pair (α, ζ) is called symmetric
with respect to the tree Tζ if for each t ∈ Tζ there are a symmetrization admissible list {it,k}mtk=1 and jt ∈
{it,k}mtk=1 such that

ζ = Sym(α, ζ; jt, {it,k}mtk=1).

An f -pair (α, ζ) is called symmetric if there is a slim evaluation tree Tζ such that (α, ζ) is a symmetric
f -pair with respect to Tζ .

Remark 6.2. Note that for any word α there are only finitely many words ζ such that (α, ζ) is symmetric.
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Proposition 6.3. If f ∈
∐
AGλ, then

N(f) = inf{ρ(α, ξ) : (α, ξ) is a symmetric reduced f -pair}.

Proof. By Lemma 5.8 it is enough to show that for any simple reduced f -pair (α, ζ) there is a symmetric
reduced f -pair (α, ξ) such that

ρ(α, ζ) ≥ ρ(α, ξ).

Let (α, ζ) be a simple reduced f -pair, and let Tζ be a slim evaluation tree for ζ. We construct a new slim
evaluation tree T ∗ζ for ζ with the following property: for any t ∈ T ∗ζ and any i ∈ R∗t if ζ(i) = e, then t is a leaf
and, moreover, R∗t = I∗t = {i}.

Let {jk}mk=1 be such that ζ(jk) = e for all k and ζ(j) = e implies j = jk for some k ∈ [1,m]. We construct
a sequence of slim evaluation trees T (k)

ζ for ζ and claim that T (m)
ζ is as desired. Set T (0)

ζ = Tζ . Suppose T (k)
ζ

has been constructed. Let t0 ∈ T (k)
ζ be such that jk+1 ∈ R(k)

t0 . If |R(k)
t0 | = 1, that is if R(k)

t0 = I(k) = {jk+1},
then do nothing: set T (k+1)

ζ = T
(k)
ζ .

Suppose |R(k)
t0 | > 1. Let s be a symbol for a new node. For all t ∈ T (k)

ζ \ {t0} set

T
(k+1)
ζ = T

(k)
ζ ∪ {s}, I(k+1)

t = I
(k)
t , I(k+1)

s = [jk+1, jk+1] = {jk+1}.

We need to turn the set T (k+1)
ζ into a tree. For that let the ordering of the nodes in T (k+1)

ζ extend the ordering

of the nodes of T (k)
ζ . To finish the construction it remains to define the place for the node s inside T (k+1)

ζ and

an interval I(k+1)
t0 .

• If jk+1 is the minimal element ofR(k)
t0 , i.e., if jk+1 = m(R

(k)
t0 ), then set I(k+1)

t0 = [m(I
(k)
t0 )+1,M(I

(k)
t0 )].

Let t1 ∈ T (k)
ζ be such that (t0, t1) ∈ E(T

(k)
ζ ). Set (s, t1) ∈ E(T

(k+1)
ζ ), or in other words, s ≺ t1 in

T
(k+1)
ζ .

• If jk+1 is the maximal element ofR(k)
t0 , i.e., if jk+1 = M(R

(k)
t0 ), then set I(k+1)

t0 = [m(I
(k)
t0 ),M(I

(k)
t0 )−1].

Let t1 ∈ T (k)
ζ be such that (t0, t1) ∈ E(T

(k)
ζ ). Set (s, t1) ∈ E(T

(k+1)
ζ ), or in other words, s ≺ t1 in

T
(k+1)
ζ .

• If jk+1 is neither maximal nor minimal element ofR(k)
t0 , then set I(k+1)

t0 = I
(k)
t0 and (s, t0) ∈ E(T

(k+1)
ζ ).

It is straightforward to check that T (k+1)
ζ is a slim evaluation tree for ζ.

Finally, we define T ∗ζ = Tmζ . Then T ∗ζ is a slim evaluation tree for ζ and, by construction, if j is such that
ζ(j) = e, then I∗t0 = {j} for some t0 ∈ T ∗ζ .

Let {ik}pk=1 be the list of external letters of ζ. Set

F ∗t =

{
R∗t ∩ {ik}

p
k=1 if R∗t ∩ {ik}

p
k=1 6= ∅;

I∗t otherwise.

Note that F ∗t is symmetrization admissible for all t. Let {tj}Nj=1 be the list of nodes of T ∗ζ . For any j ∈ [1, N ]

pick some lj such that lj ∈ Ftj . Set ξ0 = ζ and construct inductively

ξk+1 = Sym(α, ξk; lk+1, Ftk+1
).

Finally, set ξ = ξN . It follows from Lemma 2.16 that (α, ξ) is a slim f -pair and is symmetric with respect to
T ∗ζ by construction. Lemma 5.6 implies

ρ(α, ζ) ≥ ρ(α, ξ)

as desired. �

If A = {e}, that is we have a free product without amalgamation, then for any f ∈
∐
AGλ there is exactly

one reduced word α ∈ Words(G) such that α̂ = f . This observation together with Remark 6.2 gives us the
following

Corollary 6.4. If A = {e}, then for any f ∈
∐
AGλ

N(f) = min{ρ(α, ξ) : (α, ξ) is a symmetric reduced f -pair}.
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We can now prove an analog of Proposition 4.4 for the Graev metrics on the free products with amalgama-
tion.

Proposition 6.5. The Graev metric d has the following properties:

(i) if (T, dT ) is a tsi group, φλ : Gλ → T are K-Lipschitz homomorphisms (K does not depend on λ) such
that for all a ∈ A and all λ1, λ2 ∈ Λ

φλ1
(a) = φλ2

(a),

then there exist a unique K-Lipschitz homomorphism φ :
∐
AGλ → T that extends φλ;

(ii) let Hλ < Gλ be subgroups such that A < Hλ for all λ and think of
∐
AHλ as being a subgroup of

∐
AGλ.

Endow Hλ with the metric induced from Gλ. The Graev metric on
∐
AHλ is the same as the induced Graev

metric from
∐
AGλ. Moreover, if Hλ are closed subgroups, then

∐
AHλ is a closed subgroup

∐
AGλ;

(iii) let δ be any other tsi metric on the amalgam
∐
AGλ. If δ extends d, then δ(f1, f2) ≤ d(f1, f2) for all

f1, f2 ∈
∐
AGλ, i.e., d is maximal among all the tsi metrics that extend d;

(iv) if Λ′ = {λ ∈ Λ : Gλ 6= A} and |Λ′| ≥ 2, then

χ(
∐

A
Gλ) = max

{
ℵ0, sup{χ(Gλ) : λ ∈ Λ}, |Λ′|

}
.

In particular, if Λ is at most countable and Gλ are all separable, then the amalgam is also separable.

Proof. (i) By the universal property for the free products with amalgamation there is a unique extension of
the homomorphisms φλ to a homomorphism φ :

∐
AGλ → T , it remains to check that φ is K-Lipschitz. Let

(α, ζ) be a multipliable f -pair of length n. Then

Kρ(α, ζ) =

n∑
i=1

Kd(α(i), ζ(i)) ≥
n∑
i=1

dT
(
φ(α(i)), φ(ζ(i))

)
≥

dT (φ(α̂), φ(ζ̂)) = dT (φ(f), e).

And therefore
Kd(f, e) = inf{Kρ(α, ζ) : (α, ζ) is a multipliable f -pair} ≥ dT (φ(f), e).

Hence φ is K-Lipschitz.
(ii) Let dH be the Graev metric on

∐
AHλ and d be the Graev metric on

∐
AGλ. From Proposition 6.3 it

follows that dH = d|∐
AHλ

.
For the moreover part suppose that Hλ are closed in Gλ for all λ ∈ Λ. Set H =

⋃
λ∈ΛHλ. Note that H is

a closed subset of G by the definition of the metric on G. Suppose towards a contradiction that there exists
f ∈

∐
AGλ such that f 6∈

∐
AHλ, but f ∈

∐
AHλ. Let α ∈Words(G) be a reduced form of f , and let n = |α|.

Set

ε1 = min
{
d(α(i), A) : i ∈ [1, n]

}
,

ε2 = min
{
d(α(i), H) : i ∈ [1, n], α(i) 6∈ H

}
.

Note that ε1 > 0 and ε2 > 0. Let i0 ∈ [1, n] be the largest such that α(i0) 6∈ H. By Lemma 2.4 the numbers εi
and i0 are independent of the choice of the reduced form α. Set ε = min{ε1, ε2}. Let h ∈

∐
AHλ be such that

d(f, h) < ε. By Lemma 5.8 there is a simple reduced fh−1-pair (β, ξ) such that ρ(β, ξ) < ε. Let Tξ be a slim
evaluation tree for ξ, and let t0 ∈ Tξ be such that i0 ∈ Rt0 . It is easy to see that there is a word α′ such that
α′ is a reduced form of f , α′(i) = β(i) for all i ∈ [1, i0 − 1], and α′(i0) = β(i0) · h0 for some h0 ∈ H. Without
loss of generality assume that α′ = α. Note that β(i) ∈ H for all i > i0.

We claim that i0 = m(Rt0). Suppose not. Let j0 ∈ Rt0 be such that j0 < i0 and [j0 + 1, i0 − 1] ∩ Rt0 = ∅
(i.e., j0 is the predecessor of i0 in Rt0 ). Let I = [j0 + 1, i0−1]. Because Tξ is slim, ξ̂[I] = e. Since β is reduced
and (β, ξ) is multipliable, there is i1 ∈ I such that ξ(i1) ∈ A (in fact, ξ(i1) = e). But then

ρ(β, ξ) ≥ d(β(i1), ξ(i1)) ≥ d(α(i1), A) ≥ ε,

contradicting the assumption ρ(β, ξ) < ε. The claim is proved.
Therefore i0 = m(Rt0). Let {jk}mk=1 be the list of external letters of ξ, and let Ft0 = Rt0 ∩ {jk}mk=1. We

know that ξ(i0) 6∈ A, since otherwise ρ(β, ξ) ≥ ε. Thus i0 ∈ Ft0 . Let ξ′ = Sym(β, ξ; i0, Ft0). By Lemma 5.6
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ρ(β, ξ) ≥ ρ(β, ξ′). Since β(i) ∈ H for all i > i0, we get ξ′(i) ∈ H for all i ∈ Rt0 \ {i0}. Let λ0 be such that
ξ′(i) ∈ Hλ0

for all i ∈ Rt0 \ {i0}. Since ξ̂′[Rt0 ] = e, it follows that ξ′(i0) ∈ Hλ0
as well. Finally, we get

ρ(β, ξ) ≥ ρ(β, ξ′) ≥ d(β(i0), ξ′(i0)) ≥ d(α(i0), Hλ0
) ≥ ε,

contradiction the choice of (β, ξ). Therefore there is no f ∈
∐
AHλ such that f 6∈

∐
AHλ.

(iii) Let f ∈
∐
AGλ be given, let (α, ζ) be a multipliable f -pair of length n. Since δ extends d, we get

δ(f, e) ≤
n∑
i=1

δ(α(i), ζ(i)) =

n∑
i=1

d(α(i), ζ(i)).

By taking the infimum over all such pairs (α, ζ) we get δ(f, e) ≤ d(f, e). By the left invariance δ(f1, f2) ≤
d(f1, f2) for all f1, f2 ∈

∐
AGλ.

(iv) If |Λ′| ≥ 2, then
∐
AGλ is an infinite metric space, therefore χ(

∐
AGλ) ≥ ℵ0. Since Gλ <

∐
AGλ,

it follows that χ(
∐
AGλ) ≥ χ(Gλ). We now show that χ(

∐
AGλ) ≥ |Λ′|. It is enough to consider the case

|Λ′| ≥ ℵ0. There is an ε0 > 0 such that∣∣{λ ∈ Λ : sup{d(g,A) : g ∈ Gλ} > ε0
}∣∣ = |Λ′|.

For any such λ choose a gλ ∈ Gλ such that d(gλ, A) > ε0. The family {gλ}λ∈Λ is 2ε0-separated and hence
χ(
∐
AGλ) ≥ |Λ′|.

Finally, for the reverse inequality, let Fλ ⊆ Gλ be dense sets such that |Fλ| = χ(Gλ) and Fλ1
∩A = Fλ2

∩A
for all λ1, λ2 ∈ Λ. The set {

α̂ : α ∈Words(
⋃
λ∈Λ

Fλ)
}

is dense in
∐
AGλ and ∣∣∣Words(

⋃
λ∈Λ

Fλ)
∣∣∣ = max

{
ℵ0, sup{χ(Gλ) : λ ∈ Λ}, |Λ′|

}
. �

6.1. Factors of Graev metrics. Note that one can naturally view G as a pointed metric space (G, e, d), and
the identity map G→

∐
AGλ is 1-Lipschitz (in fact, we have shown in Theorem 5.10 that it is an isometric

embedding). We can construct the Graev metric on the free group (F (G), dF ), and by item (i) of Proposition
4.4 there is a 1-Lipschitz homomorphism

φ : F (G)→
∐

A
Gλ

such that φ(g) = g for all g ∈ G. Since G generates
∐
AGλ, the map φ is onto. Let N = ker(φ) be the kernel

of this homomorphism. If d0 is the factor metric on F (G)/N (see the remark after Proposition 3.4), then
(F (G)/N, d0) is a tsi group and F (G)/N is isomorphic to

∐
AGλ as an abstract group.

Proposition 6.6. In the above setting (F (G)/N, d0) is isometrically isomorphic to (
∐
AGλ, d).

Proof. We recall the definition of the factor metric: for f1N, f2N ∈ F (G)/N

d0(f1N, f2N) = inf{dF (f1h1, f2h2) : h1, h2 ∈ N}.

Of course, by construction F (G)/N is isomorphic to
∐
AGλ and we check that the natural isomorphism is an

isometry.
Let f ∈

∐
AGλ, and let w ∈Words(G) be a reduced form of f . We can naturally view w as a reduced form

of the element in F (G), call it f ′. It is enough to show that for any such f and f ′ we have

d0(f ′N,N) = d(f, e).

Note that if h ∈ N, then h] ∈ N (for the definition of h] see Subsection 4.1). Therefore by Proposition 4.5

d0(f ′N,N) = inf{dF (f ′h, e) : h ∈ N} = inf{dF (f ′h], e) : h ∈ N}.

Let h ∈ N and γ ∈Words(G) be the reduced form of h] ∈ F (G), we claim that

dF (f ′h], e) = inf
{
ρ
(
w_γ, (w_γ)θ

)
: θ is a match on [1, |w_γ|]

}
.
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In general, w_γ may not be reduced, so let w = w0
_α, γ = α−1_γ0 be such that w0

_γ0 is reduced. By
Theorem 4.3

dF (f ′h], e) = inf
{
ρ
(
w0

_γ0, (w0
_γ0)θ

)
: θ is a match on [1, |w0

_γ0|]
}
.

To see the claim it remains to note that for any match θ on [1, |w0
_γ0|] there is a canonical match θ′ on

[1, |w_γ|] such that

ρ
(
w0

_γ0, (w0
_γ0)θ

)
= ρ
(
w_γ, (w_γ)θ

′)
.

The match θ′ can formally be defined by

θ′(i) =



θ(i) if i ≤ |w0| and θ(i) ≤ |w0|,
θ(i) + 2|α| if i ≤ |w0| and θ(i) > |w0|,
2|w| − i+ 1 if |w0| < i ≤ |w0|+ 2|α|,
θ(i− 2|α|) if i > |w0|+ 2|α| and θ(i− 2|α|) ≤ |w0|,
θ(i− 2|α|) + 2|α| if i > |w0|+ 2|α| and θ(i− 2|α|) > |w0|.

Therefore

dF (f ′h], e) = inf
{
ρ
(
w_γ, (w_γ)θ

)
: θ is a match on [1, |w_γ|]

}
.

Since w, γ ∈ Words(G) and since γ̂ = e, we get d(f, e) ≤ d0(f ′N,N). Since f was arbitrary and because of
the left invariance of the metrics d and d0, we get d ≤ d0.

For the reverse inequality note that d0 is a two-sided invariant metric on
∐
AGλ and it extends the metric

d on G, therefore by item (iii) of Proposition 6.5 we have d0 ≤ d and hence d0 = d. �

6.2. Graev metrics for products of Polish groups. We would like to note that the construction of metrics
on the free products with amalgamation works well with respect to group completions. Let us be more precise.
Suppose we start with tsi groups (Gλ, dλ) and a common closed subgroup A < Gλ, assume additionally that
all the groups Gλ are complete as metrics spaces. The group (

∐
AGλ, d), in general, is not complete, so let’s

take its group completion (for tsi groups this is the same as the metric completion), which we denote by
(
∐
AGλ, d). We have an analog of item (i) of Proposition 6.5 for complete tsi groups. But first we need a

simple lemma.

Lemma 6.7. Let (H1, d1) and (H2, d2) be complete tsi groups, Λ < H1 be a dense subgroup and φ : Λ→ H2 be
a K-Lipschitz homomorphism. Then φ extends uniquely to a K-Lipschitz homomorphism

ψ : H1 → H2.

Proof. Let h ∈ H1 and let {bn}∞n=1 ⊆ Λ be such that bn → h. Since ψ is K-Lipschitz, we have

d2(ψ(bn), ψ(bm)) ≤ Kd1(bn, bm).

Hence {ψ(bn)}∞n=1 is a d2-Cauchy sequence, and thus there is f ∈ H2 such that ψ(bn) → f . Set ψ(h) = f .
This extends ψ to a map ψ : H1 → H2 and it is easy to see that is extension is still K-Lipschitz. �

Combining the above result with item (i) of Proposition 6.5 we get

Proposition 6.8. Let (T, dT ) be a complete tsi group, let φλ : Gλ → T be K-Lipschitz homomorphisms such
that for all a ∈ A and all λ1, λ2 ∈ Λ

φλ1(a) = φλ2(a).

There exist a unique K-Lipschitz homomorphism φ :
∐
AGλ → T such that φ extends φλ for all λ.

This proposition together with item (iv) of Proposition 6.5 shows that there are countable coproducts in
the category of tsi Polish metric groups and 1-Lipschitz homomorphisms.



20 KONSTANTIN SLUTSKY

6.3. Tsi groups with no Lie sums and Lie brackets. In [vdDG09] L. van den Dries and S. Gao gave
an example of a group, which they denote by F , and a two-sided invariant metric d on F such that the
completion (F , d) of this group has neither Lie sums nor Lie brackets. More precisely, they constructed two
one-parameter subgroups

Ai =
(
f

(i)
t

)
t∈R

< F i = 1, 2,

such that neither Lie sum nor Lie bracket of A1 and A2 exist.
Their group can be nicely explained in out setting. It turns out that the group F that they have constructed

is isometrically isomorphic to the group Q ∗ Q with the Graev metric (and the metrics on the copies of the
rationals are the usual absolute-value metrics). The group completion of Q ∗Q is then the same as the group
completion of the group R ∗ R with the Graev metric. And moreover, A1 and A2 are just the one-parameter
subgroups given by the R factors.

7. METRICS ON SIN GROUPS

Recall that topological group is SIN if for every open neighborhood of the identity there is a smaller open
neighborhood V ⊆ G such that gV g−1 = V for all g ∈ G. SIN stands for Small Invariant Neighborhoods. It
is well-knows that a metrizable topological group admits a compatible two-sided invariant metric if and only
if it is a SIN group.

Suppose Gλ are metrizable topological groups that admit compatible two-sided invariant metrics and
A < Gλ is a common closed subgroup. It is natural to ask whether one can find compatible tsi metrics dλ
that agree on A.

Question 7.1. LetG1 andG2 be metrizable SIN topological groups, and letA < Gi be a common closed subgroup.
Are there compatible tsi metrics di on Gi such that

d1(a1, a2) = d2(a1, a2)

for all a1, a2 ∈ A?

We do not know the answer to this question. Before discussing some partial results let us recall the notion
of a Birkhoff-Kakutani family of neighborhoods.

Definition 7.2. Let G be a topological group. A family {Ui}∞i=0 of open neighborhoods of the identity e ∈ G
is called Birkhoff-Kakutani if the following conditions are met:

(i) U0 = G;
(ii)

⋂
i Ui = e;

(iii) U−1
i = Ui;

(iv) U3
i+1 ⊆ Ui.

If additionally
(v) gUig

−1 = Ui for all g ∈ G,
then the sequence is called conjugacy invariant.

It is well known (see, for example, [Gao09]) that a topological group G admits a Birkhoff-Kakutani family
if and only if it is metrizable. Moreover, let {Ui}∞i=0 be a Birkhoff-Kakutani family in a group G, for g1, g2 ∈ G
set

η(g1, g2) = inf{2−n : g−1
2 g1 ∈ Un},

d(g1, g2) = inf
{ n−1∑
i=1

η(fi, fi+1) : {fi}ni=1 ⊆ G, f1 = g1, fn = g2

}
.

Then the function d is a compatible left invariant metric on G and for all g1, g2 ∈ G
1

2
η(g1, g2) ≤ d(g1, g2) ≤ η(g1, g2).

We call this metric d a Birkhoff-Kakutani metric associated with the family {Ui}.
A metrizable topological group admits a compatible tsi metric if and only if there is a conjugacy invariant

Birkhoff-Kakutani family, and moreover, if {Ui} is conjugacy invariant, then the metric d constructed above
is two-sided invariant.
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Proposition 7.3. Let G1 and G2 be metrizable SIN groups, let A < Gi be a common subgroup. There are
compatible tsi metrics di on Gi such that d1|A is bi-Lipschitz equivalent to d2|A, i.e, there is K > 0 such that

1

K
d1(a1, a2) ≤ d2(a1, a2) ≤ Kd1(a1, a2)

for all a1, a2 ∈ A.

Proof. SinceG1 andG2 are metrizable, we can fix two compatible metrics µ1 and µ2 onG1 andG2 respectively
such that µi-diam(Gi) < 1. We construct conjugacy invariant Birkhoff-Kakutani families {U (j)

i }∞i=0 for Gj ,
j = 1, 2, such that

(i) U
(1)
2i+1 ∩A ⊆ U

(2)
2i ∩A;

(ii) U
(2)
2i+2 ∩A ⊆ U

(1)
2i+1 ∩A.

For the base of construction let U j0 = Gj . Suppose we have constructed {U (j)
i }Ni=1 and suppose N is even (if

N is odd, switch the roles of G1 and G2). If V = U
(2)
N ∩A, then V is an open neighborhood of the identity in

A and therefore there is an open set U ⊆ G1 such that U ∩A = V . Let U (1)
N+1 ⊆ G1 be any open neighborhood

of the identity such that (U
(1)
N+1)−1 = U

(1)
N+1, gU (1)

N+1g
−1 = U

(1)
N+1 for all g ∈ G1, µ1-diam(U

(1)
N+1) < 1/N and

(U
(1)
N+1)3 ⊆ U ∩ U (1)

N .

Such a U (1)
N+1 exists because G1 is SIN. Set U (2)

N+1 to be any open symmetric neighborhood of e ∈ G2 such that

(U
(2)
N+1)3 ⊆ U (2)

N .

It is straightforward to check that such sequences {U (j)
i }∞i=1 indeed satisfy all the requirements. If dj are

the Birkhoff-Kakutani metrics that correspond to the families {U (j)
i }, then for all a1, a2 ∈ A

1

4
η1(a1, a2) ≤ η2(a1, a2) ≤ 4η1(a1, a2),

whence
1

8
d1(a1, a2) ≤ d2(a1, a2) ≤ 8d1(a1, a2),

and therefore d1|A and d2|A are bi-Lipschitz equivalent with a constant K = 8. �

Remark 7.4. It is, of course, straightforward to generalize the above construction to the case of finitely many
groups Gj , but we do not know if the result is true for infinitely many groups Gj .

Remark 7.5. Note that one can always multiply the metric d2 by a suitable constant (which is 8 in the above
construction) to assure that d1|A ≤ d2|A. We use this observation later in Remark 7.7.

Proposition 7.6. Let G be a topological group, A < G be a closed subgroup of G, NG be a tsi norm on G, NA
be a tsi norm on A and suppose that for all a ∈ A

NA(a) ≤ NG(a).

There exists a compatible norm N on G such that
(i) N extends NA, that is NA(a) = N(a) for all a ∈ A;

(ii) N ≤ NG.
If, moreover, A is a normal subgroup of G, then N is two-sided invariant.

Proof. For g ∈ G set
N(g) = inf{NA(a) +NG(a−1g) : a ∈ A}.

We claim that N is a pseudo-norm on G.
• N(e) = 0 is obvious.
• For any g ∈ G and any a ∈ A by the two-sided invariance of NG

NA(a) +NG(a−1g) = NA(a−1) +NG(g−1a) = NA(a−1) +NG(ag−1)

and therefore N(g) = N(g−1).
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• If g1, g2 ∈ G, then

N(g1g2) = inf{NA(a) +NG(a−1g1g2) : a ∈ A} =

inf{NA(a1a2) +NG(a−1
2 a−1

1 g1g2) : a1, a2 ∈ A} ≤
inf{NA(a1) +NA(a2) +NG(a−1

1 g1) +NG(g2a
−1
2 ) : a1, a2 ∈ A} =

inf{NA(a1) +NG(a−1
1 g1) : a1 ∈ A}+

inf{NA(a2) +NG(a−1
2 g2) : a2 ∈ A} =

N(g1) +N(g2).

Next we show that N is a compatible pseudo-norm. For a sequence {gn}∞n=1 ⊆ G we have

N(gn)→ 0 ⇐⇒ ∃{an}∞n=1 ⊆ A NA(an) +NG(a−1
n gn)→ 0 ⇐⇒

∃{an}∞n=1 ⊆ A an → e and a−1
n gn → e ⇐⇒

gn → e.

In particular, N is a norm.
(i) Now we claim that N extends NA. Let b ∈ A. Using NG ≥ NA we get

N(b) = inf{NA(a) +NG(a−1b) : a ∈ A} ≥
inf{NA(a) +NA(a−1b) : a ∈ A} ≥ NA(b).

On the other hand
N(b) ≤ NA(b) +NG(b−1b) = NA(b),

and therefore N(b) = NA(b).
(ii) Finally, for any g ∈ G we have

N(g) = inf{NA(a) +NG(a−1g) : a ∈ A} ≤
inf{NG(a) +NG(a−1g) : a ∈ A} ≤
NG(e) +NG(g) = NG(g),

and therefore N ≤ NG.
For the moreover part suppose that A is a normal subgroup. If g1 ∈ G, then

N(g1gg
−1
1 ) = inf{NA(a) +NG(a−1g1gg

−1
1 ) : a ∈ A} =

inf{NA(g−1
1 ag1) +NG(g−1

1 a−1g1g) : a ∈ A} = N(g),

and so N is two-sided invariant. �

Remark 7.7. Proposition 7.3 (with Remark 7.5) and Proposition 7.6 together yield a positive answer to
Question 7.1 when A is a normal subgroup of one of Gj .

It is natural to ask whether it is really necessarily to assume in Proposition 7.6 the existence of a norm NG
such that NA ≤ NG. The following example shows that this assumption cannot be dropped.

Example. Let G be the discrete Heisenberg group

G =


1 a b

0 1 c
0 0 1

 : a, b, c ∈ Z

 ,

and let A be the center of G

A =


1 0 b

0 1 0
0 0 1

 : b ∈ Z

 .

The subgroup A is, of course, isomorphic to the group of integers Z. Let d be a metric on A given by the
absolute value: d(b1, b2) = |b1 − b2|. We claim that this tsi metric can not be extended to a tsi (in fact, even
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to a left invariant) metric on G. Indeed, suppose there is such an extension d. The group G is generated by
the three matrices:

x =

1 1 0
0 1 0
0 0 1

 , y =

1 0 0
0 1 1
0 0 1

 , and z =

1 0 −1
0 1 0
0 0 1

 .

It is easy to check that zn
2

= [xn, yn] = xnynx−ny−n. Therefore

n2 = d(z(n2), e) = d(zn
2

, e) = d(xnynx−ny−n, e) ≤ 2n
(
d(x, e) + d(y, e)

)
,

for all n, which is absurd.

8. INDUCED METRICS

In this section (G, d) denotes a tsi group, and A < G is a closed subgroup. This section is a preparation
for the HNN construction, which is given in the next section. Let 〈t〉 denote a copy of the free group on one
element t, i.e., a copy of the integers, with the usual metric d(tm, tn) = |m − n|. The Graev metric on the
free product G ∗ 〈t〉 is denoted again by the letter d. Consider the subgroup of the free product generated
by G and tAt−1; it not hard to check that, in fact, as an abstract group it is isomorphic to the free product
G ∗ tAt−1. Thus we have two metrics on the group G ∗ tAt−1: one is just the metric d, the other one is the
Graev metric on this free product; denote the latter by d. When are these two metrics the same? It turns out
that they are the same if and only if the diameter of A is at most 1. The proof of this fact is the core of this
section.

We can naturally view Words(G ∪ tAt−1) as a subset of Words(G ∪ 〈t〉) by treating a letter tat−1 ∈ tAt−1

as a word t_a_t−1 ∈ Words(G ∪ 〈t〉). In what follows we identify Words(G ∪ tAt−1) with a subset of
Words(G ∪ 〈t〉).

Let f ∈ G ∗ tAt−1 be given and let α ∈ Words(G ∪ tAt−1) be the reduced form of f . Note that since we
have a free product (no amalgamation), reduced form is unique. The word α ∈Words(G∪〈t〉) can be written
as

α = g1
_t_a1

_t−1g2
_t_a2

_t−1_ · · ·_t_an_t−1_gn+1,

where gi ∈ G, ai ∈ A, and also g1 or gn+1 may be absent.
Lemma 5.8 implies

d(f, e) = inf{ρ(α, ζ) : (α, ζ) is a multipliable f -pair},
and notice that the infimum is taken over all pairs with the same first coordinate α –- the reduced form of f .
We can also impose some restrictions on ζ and change the infimum to a minimum, but we do not need this
for a moment.

In the rest of the section ζ, ξ, δ denote words in the alphabet G ∪ 〈t〉.

8.1. Hereditary words.

Definition 8.1. A trivial word ζ ∈Words(G∪ 〈t〉) is called hereditary if ζ(i) ∈ 〈t〉 \ {e} implies ζ(i) = t±1 for
all i ∈ [1, n]. A multipliable f -pair (α, ζ), where f ∈ G ∗ tAt−1, is called hereditary if α is the reduced form of
f , ζ is hereditary, and moreover,

ζ(i) = t±1 =⇒ ζ(i) = α(i).

Lemma 8.2. Let f ∈ G ∗ tAt−1, and let α ∈Words(G ∪ 〈t〉) be the reduced form of f . If (α, ζ) is a multipliable
f -pair, then there exists a trivial word ξ ∈Words(G ∪ 〈t〉) such that (α, ξ) is a hereditary f -pair and ρ(α, ξ) ≤
ρ(α, ζ).

Proof. Let Tζ be an evaluation tree for ζ. Fix s ∈ Tζ . Suppose there exists j ∈ Rs such that α(j) = t±1 and
neither ζ(j) = α(j) nor ζ(j) = e. Since ζ(j) 6= e and because the pair (α, ζ) is multipliable, it must be the
case that ζ(j) = tM for some M 6= 0. Let {ik}mk=1 ⊆ Rs be the complete list of external letters of ζ in Rs, note
that j ∈ {ik}mk=1. Since Rs is ζ-multipliable, we have ζ(ik) ∼ t for all k ∈ [1,m]. Note that since we have a
free product, any evaluation tree is, in fact, slim, and any multipliable f -pair is, in fact, a simple f -pair. So
we can perform a symmetrization. Set

δ = Sym(α, ζ; i1, {ik}).
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By Lemma 5.6 ρ(α, δ) ≤ ρ(α, ζ) and also for all i ∈ Rs we have

(α(i) = δ(i)) or (δ(i) = e) or (i = i1).

Let εk ∈ {−1,+1} be such that α(ik) = tεk . For all k ∈ [2,m]

δ(ik) = α(ik) = tεk .

Let N be such that δ(i1) = tN . Note that since δ̂[Is] = e,

N + ε2 + . . .+ εm = 0.

We now construct a word ξ̄ as follows.

Case 0. If N = 0 or N = ε1, then set ξ̄ = δ.

In cases below we assume N 6∈ {0, ε1}.

Case 1. Suppose sign(N) = sign(ε1). Find different indices k1, . . . , k|N |−1 such that sign(N) = − sign(εkp) for
all p ∈ [1, |N | − 1]. Set

ξ̄(i) =


δ(i) if i 6∈ {ikp}

|N |−1
p=1 and i 6= i1;

α(i1) if i = i1;

e if i ∈ {ikp}
|N |−1
p=1 .

Case 2. Suppose sign(N) = − sign(ε1). Find different indices k1, . . . , k|N | such that sign(N) = − sign(εkp) for
all p ∈ [1, |N |]. Set

ξ̄(i) =

{
δ(i) if i 6∈ {ikp}

|N |
p=1 and i 6= i1;

e if i ∈ {ikp}
|N |
p=1 or i = i1.

It is easy to check that ρ(α, δ) = ρ(α, ξ̄) and ˆ̄ξ = e. Moreover, for all i ∈ Rs either ξ̄(i) = α(i) or ξ̄(i) = e.
Now apply the same procedure for all s ∈ Tζ and denote the result by ξ. The word ξ is as desired. �

To analyze the structure of hereditary words we introduce the following notion of a structure tree.

Definition 8.3. Let ζ be a hereditary word of length n. A tree Tζ together with a function that assigns to a
node s ∈ Tζ an interval Is ⊆ [1, n] is called a structure tree for ζ if for all s′, s ∈ Tζ the following conditions
are met:

(i) I∅ = [1, n];
(ii) ζ̂[Is] = e;

(iii) if s 6= ∅, then ζ(m(Is)) = t±1 and ζ(M(Is)) = t∓1 (in particular ζ(m(Is)) = ζ(M(Is))
−1).

Set Rs = Is \
⋃
s′≺s Is′ ; then also

(v) for all i ∈ Rs if i 6∈ {m(Is),M(Is)}, then ζ(i) ∈ G (in particular Rs \ {m(Is),M(Is)} is ζ-multipliable);
(vi) ζ(i) ∈ G for all i ∈ R∅ (in general R∅ may be empty);

(vii) if H(s) ≤ H(s′) and Is′ ∩ Is 6= ∅, then s′ ≺ s or s′ = s;
(viii) if s′ ≺ s and s 6= ∅, then

m(Is) < m(Is′) < M(Is′) < M(Is).

Lemma 8.4. If ζ is a hereditary word of length n, then

|{i ∈ [1, n] : ζ(i) = t}| = |{i ∈ [1, n] : ζ(i) = t−1}|.

Proof. Let {ik}mk=1 be the list of letters such that
(i) ζ(ik) = tεk for some εk ∈ {−1, 1};

(ii) ζ(i) = tε, ε ∈ {−1, 1}, implies i = ik for some k.

Since ζ̂ = e, we get
ε1 + . . .+ εm = 0,

and therefore
|{i ∈ [1, n] : ζ(i) = t}| = |{i ∈ [1, n] : ζ(i) = t−1}|. �

Lemma 8.5. Let ζ be a hereditary word of length n. If there is i ∈ [1, n] such that ζ(i) = t, then there is an
interval I ⊆ [1, n] such that
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(i) ζ(m(I)) = t±1 and ζ(M(I)) = t∓1;
(ii) ζ(i) ∈ G for all i ∈ I \ {m(I),M(I)};

(iii) ζ̂[I] = e.

Proof. Let I1, . . . , Im be the list of intervals such that
(i) ζ(m(Ik)) = t±1, ζ(M(Ik)) = t∓1;

(ii) ζ(i) ∈ G for all i ∈ Ik \ {m(Ik),M(Ik)};
(iii) M(Ik) ≤ m(Ik+1);
(iv) if I is an interval that satisfies (i) and (ii) above, then I = Ik for some k ∈ [1,m].
It follows from Lemma 8.4 that the list of such intervals is nonempty. Let J0, . . . , Jm be the complementary
intervals:

J0 = [1,m(J1)− 1], Jm = [M(Jm) + 1, n],

Jk = [M(Ik) + 1,m(Ik+1) + 1] for k ∈ [2,m− 1].

Some (and even all) of the intervals Jk may be empty. If for some j1, j2 ∈ Jk we have ζ(j1) = tε1 , ζ(j2) = tε2 ,
then ε1 = ε2, and moreover, ζ(M(Ik)) = ζ(j1) = ζ(m(Ik+1)). It is now easy to see that ζ̂[Ik] 6= e for all
k ∈ [1,m] implies ζ̂ 6= e, contradicting the assumption that ζ is trivial. �

Lemma 8.6. If ζ is a hereditary word of length n, then there is a structure tree Tζ for ζ.

Proof. We prove the lemma by induction on |{i ∈ [1, n] : ζ(i) = t}|. For the base of induction suppose that
ζ(i) 6= t for all i. By the definition of a hereditary word and by Lemma 8.4 we have ζ(i) ∈ G for all i ∈ [1, n].
Set Tζ = {∅} and I∅ = [1, n]. It is easy to see that this gives a structure tree.

Suppose now there is i ∈ [1, n] such that ζ(i) = t. Apply Lemma 8.5 and let I denote an interval granted
by this lemma. Let m be the length of I. If m = n, that is if I = [1, n], then set Tζ = {∅, s} with s ≺ ∅ and
Is = I∅ = [1, n]. One checks that this is a structure tree. Assume now that m < n . Define a word δ of length
n−m by

δ(i) =

{
ζ(i) if i < m(I)

ζ(i+m) if i ≥ m(I).

The word δ is a hereditary word and

|{i ∈ [1, |δ|] : δ(i) = t}| < |{i ∈ [1, n] : ζ(i) = t}|.
Therefore, by induction hypothesis, there is a structure tree Tδ and intervals Js, s ∈ Tδ, for the word δ.
Let s′ be a symbol for a new node. Set Tζ = Tδ ∪ {s′}. If m(I) = 1 or M(I) = n, set (s′, ∅) ∈ E(Tδ).
Otherwise let s ∈ Tδ be the minimal node such that m(Js) < m(I) ≤ M(Js) (s may still be the root ∅) and
set (s′, s) ∈ E(Tδ). Finally, define for s ∈ Tδ

Is =


Js if M(Js) < m(I);

[m(Js),M(Js) +m] if m(Js) < m(I) ≤M(Js);

[M(Js) +m,M(Js) +m] if m(I) ≤ m(Js).

and set Is′ = I.
It is now straightforward to check that Tζ is a structure tree for ζ. �

8.2. From hereditary to rigid words. From now on A will denote a closed subgroup of G of diameter
diam(A) ≤ 1, unless stated otherwise.

Lemma 8.7. If (G, d) is a tsi group, then for all g1, . . . , gn−1 ∈ G, for all a1, . . . , an ∈ A such that d(ai, e) ≤ 1

d(g1 · · · gn−1, a1g1a2 · · · an−1gn−1an) ≤ n

Proof. By induction. For n = 2 we have

d(g1, a1g1a2) ≤ d(g1, a1g1) + d(a1g1, a1g1a2) = d(e, a1) + d(e, a2) ≤ 2.

For the step of induction
d(g1 · · · gn−1, a1g1a2 · · · an−1gn−1an) ≤
d(g1 · · · gn−1, g1 · · · gn−1an) + d(g1 · · · gn−1an, a1g1a2 · · · an−1gn−1an) =

d(e, an) + d(g1 · · · gn−2, a1g1a2 · · · gn−2an−1) ≤ 1 + (n− 1) = n.
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And the lemma follows. �

Let β be a word of the form

β = g0
_t_a1

_t−1_g1
_t_a2

_t−1_ · · ·_gn−1
_t_an

_t−1_gn,

where gi ∈ G and ai ∈ A.
Define a word δ by setting for i ∈ [1, |β|]

δ(i) =


e if i = 1 mod 4;

t if i = 2 mod 4;

e if i = 3 mod 4;

t−1 if i = 0 mod 4.

Or, equivalently,
δ = e_t_e_t−1e_ · · ·_e_t_e_t−1_e.

If Tδ = {∅, s1, . . . , sn, s
′
1, . . . , s

′
n} with sk ≺ ∅, s′k ≺ sk, Isk = [4k − 2, 4k], Is′k = {4k − 1}, then Tδ is a slim

evaluation tree. Set
ξ = Sym(β, δ; 1, {4k + 1}nk=0) = Sym(β, δ; 1, R∅).

Lemma 8.8. Let β, ξ be as above. If ζ is a trivial word of length |β|, ζ and β are multipliable and ζ(i) ∈ G for
all i, in other words if

ζ = h0
_e_h1

_e_h2
_e_h3

_e_ · · ·_h2n−2
_e_h2n−1

_e_h2n,

where hi ∈ G, then ρ(β, ξ) ≤ ρ(β, ζ).

Proof. By the two-sided invariance

ρ(β, ζ) ≥ d(g0a1g1a2 · · · gn−1angn, e) + 2n.

On the other hand

ρ(β, ξ) =

n∑
i=1

d(ai, e) + d(g0g1 · · · gn, e) ≤

n+ d(g0g1 · · · gn, e) ≤
n+ d(g0g1 · · · gn, g0a1g1a2 · · · gn−1angn) + d(g0a1g1a2 · · · gn−1angn, e) =

n+ d(g1 · · · gn−1, a1g1 · · · gn−1an) + d(g0a1g1a2 · · · gn−1angn, e) ≤
[by Lemma 8.7] 2n+ d(g0a1g1a2 · · · gn−1angn, e).

Hence ρ(β, ξ) ≤ ρ(β, ζ). �

Suppose we have words
νk = g(k,1)

_ · · ·_g(k,qk), where g(k,j) ∈ G and k ∈ [0, n],

µk = a(k,1)
_ · · ·_a(k,pk), where a(k,j) ∈ A and k ∈ [1, n].

And let β̄ be the word

β̄ = ν0
_t_µ1

_t−1ν1
_ · · ·_νn−1

_t_µn
_t−1_νn.

Let {ik}nk=1, {i′k}nk=1 be indices such that
(i) ik < ik+1, i′k < i′k+1;

(ii) β(ik) = t, β(i′k) = t−1;
(iii) if β(i) = t, then i = ik for some k ∈ [1, n]; if β(i) = t−1, then i = i′k for some k ∈ [1, n].
In other words

ik =

k−1∑
l=0

ql +

k−1∑
l=1

pk + 2(k − 1) + 1, i′k = ik + pk + 1.

Define the word δ of length |β̄| by

δ(i) =

{
e if β̄(i) ∈ G;

β̄(i) if β̄(i) = t±1.
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If Tδ = {∅, s1, . . . , sn, s
′
1, . . . , s

′
n}, sk ≺ ∅, s′k ≺ sk and Isk = [ik, i

′
k], Is′k = [ik + 1, i′k − 1] (in other words Isk

and Is′k are such that β̄[Isi ] = t_µi
_t−1, β̄[Isi ] = µi), then Tδ is a slim evaluation tree. Let {jk}mk=1 be the

enumeration of the set

[1, |β̄|] \
n⋃
k=1

[ik, i
′
k].

Set inductively

ξ0 = Sym(β̄, δ; j1, {jk}) = Sym(β̄, δ; j1, R∅),

ξl = Sym(β̄, ξl−1; j
(l)
1 , {j(l)

k }) = Sym(β̄, ξl−1; j
(l)
1 , Rs′l),

where j(l)
k = il + k, l ∈ [1, n], k ∈ [1, pk]. Finally set ξ̄ = ξn.

Example. For example, if
β̄ = g1

_g2
_t_a1

_a2
_a3

_t−1_g3,

then
δ = e_e_t_e_e_e_t−1_e,

ξ0 = x_g2
_t_e_e_e_t−1_g3, x = g−1

3 g−1
2 ,

ξ1 = x_g2
_t_y_a2

_a3
_t−1_g3, y = a−1

3 a−1
2 .

Lemma 8.9. Let β̄, ξ̄ be as above. If ζ is a trivial word of length |β̄|, ζ and β̄ are multipliable and ζ(i) ∈ G for
all i, then ρ(β̄, ξ̄) ≤ ρ(β̄, ζ).

Proof. Set

β = ν̂0
_t_µ̂1

_t−1_ . . ._µ̂n
_t−1_ν̂n,

ξ′ = ˆ̄ξ[1, i1 − 1]_t_ ˆ̄ξ[i1 + 1, i′1 − 1]_t−1_ . . ._ ˆ̄ξ[in + 1, i′n − 1]_t−1_ ˆ̄ξ[i′n + 1, n],

ζ ′ = ζ̂[1, i1 − 1]_t_ζ̂[i1 + 1, i′1 − 1]_t−1_ . . ._ζ̂[in + 1, i′n − 1]_t−1_ζ̂[i′n + 1, n].

If ξ is as in Lemma 8.8, then ξ′ = ξ and

ρ(β̄, ζ) ≥ [by tsi] ρ(β, ζ ′) ≥ [by Lemma 8.8] ρ(β, ξ) = ρ(β, ξ′) = ρ(β̄, ξ̄). �

Lemma 8.10. Let β̄ be a word of the form

β̄ = ν0
_t_µ1

_t−1ν1
_ · · ·_νn−1

_t_µn
_t−1_νn,

for some words µi ∈Words(A), νi ∈Words(G). If j0, j1 ∈ [1, |β̄|] are such that j0 < j1, β̄(j0), β̄(j1) ∈ {t, t−1}
and β̄(j0) = β̄(j1)−1, then β̄

[
[1, |β̄|] \ [j0, j1]

]
can be written as

β̄
[
[1, |β̄|] \ [j0, j1]

]
= ν′0

_t_µ′1
_t−1ν′1

_ · · ·_ν′m−1
_t_µ′m

_t−1_ν′m,

for µ′i ∈Words(A), ν′i ∈Words(G) and m ≤ n.

Proof. Suppose for definiteness that β̄(j0) = t (the case β̄(j0) = t−1 is similar). For some k, l we can write
β̄ = β̄0

_νk
_t_β̄1

_t−1_νl
_β̄2, where |β̄0| + |νk| = j0 − 1, |β̄2| + |νl| = |β̄| − j1 and β̄0 is either empty or

ends with t−1, β̄2 is either empty or starts with t. Then

β̄
[
[1, |β̄|] \ [j0, j1]

]
= β̄0

_νk
_νl

_β̄2. �

Let γ be a word of the form

γ = a0
_t−1_g0

_t_a1
_t−1_g1

_t_ · · ·_an−1
_t−1_gn−1

_t_an,

where gi ∈ G and ai ∈ A. Let ζ be a trivial word such that ζ and γ are multipliable and ζ(i) ∈ G for all i. In
other words

ζ = h0
_e_h1

_e_h2
_e_h3

_e_ · · ·_h2n−2
_e_h2n−1

_e_h2n,
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where hi ∈ G. Define a word δ by

δ(i) =



a0 if i = 1;

e if i = 1 mod 4 and 1 < i < 4n+ 1;

t−1 if i = 2 mod 4;

e if i = 3 mod 4;

t if i = 0 mod 4;

a−1
0 if i = 4n+ 1.

Or, equivalently,
δ = a0

_t−1_e_t_e_ · · ·_e_t−1_e_t_a−1
0 .

If Tδ = {∅, u, s, s1, . . . , sn−1, s
′
1, . . . , s

′
n−1} with u ≺ ∅, s ≺ u, sk ≺ s, s′k ≺ sk, Iu = [2, n − 1], Is = [3, n − 2],

Isk = [4k, 4k + 2], Is′i = {4k + 1}, then Tδ is a slim evaluation tree. Set

ξ = Sym(γ, δ; 3, {4k − 1}nk=1) = Sym(γ, δ; 3, Rs).

Example. For example, if
γ = a0

_t−1_g0
_t_a1

_t−1_g1
_t_a2,

then
δ = a0

_t−1_e_t_e_t−1_e_t_a−1
0 ,

ξ = a0
_t−1_g−1

1
_t_e_t−1_g1

_t_a−1
0 .

Lemma 8.11. If γ, ζ, ξ are as above, then ρ(γ, ξ) ≤ ρ(γ, ζ).

Proof. By the two-sided invariance

ρ(γ, ζ) ≥ d(a0g0a1g1 · · · an−1gn−1an, e) + 2n.

On the other hand

ρ(γ, ξ) =d(a0an, e) +

n−1∑
i=1

d(ai, e) + d(g0g1 · · · gn, e) ≤

n+ d(g0g1 . . . gn−1, a
−1
0 a−1

n ) + d(a−1
0 a−1

n , e) ≤
n+ 1 + d(g0g1 · · · gn−1, a

−1
0 a−1

n ) ≤
n+ 1 + d(a0g0g1 · · · gn−2gn−1an, a0g0a1g1 · · · an−1gn−1an)+

d(a0g0a1g1 · · · an−1gn−1an, e) =

n+ 1 + d(g1 · · · gn−2, a1g1 · · · gn−2an−1)+

d(a0g0a1g1 · · · an−1gn−1an, e) ≤ [by Lemma 8.7]

n+ 1 + n− 1 + d(a0g0a1g1 · · · an−1gn−1an, e) ≤ ρ(γ, ζ).

And the lemma follows. �

Suppose we have words

µk = a(k,1)
_ · · ·_a(k,pk), where a(k,j) ∈ A and k ∈ [0, n],

νk = g(k,1)
_ · · ·_g(k,qk), where g(k,j) ∈ G and k ∈ [1, n],

and let γ̄ be the word
γ̄ = µ0

_t−1_ν0
_t_µ1

_ · · ·_µn−1
_t−1_νn−1

_t_µn.

Let {ik}nk=1, {i′k}nk=1 be indices such that

(i) ik < ik+1, i′k < i′k+1;
(ii) γ(ik) = t−1, γ(i′k) = t;

(iii) if γ(i) = t−1, then i = ik for some k ∈ [1, n]; if γ(i) = t, then i = i′k for some k ∈ [1, n].
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Define the word δ of length |γ̄| by

δ(i) =

{
e if γ̄(i) ∈ G;

γ̄(i) if γ̄(i) = t±1.

If Tδ = {∅, u, s, s1, . . . , sn−1, s
′
1, . . . , s

′
n−1}, u ≺ ∅, s ≺ u, sk ≺ s, s′k ≺ sk and Iu = [i1, i

′
n], Is = [i1 + 1, i′n − 1],

Isk = [i′k, ik+1], Is′k = [i′k + 1, i′k+1 − 1] (in other words Isk and Is′k are such that γ̄[Isi ] = t_µi
_t−1,

γ̄[Isi ] = µi), then Tδ is a slim evaluation tree.
Let {jk}mk=1 be the enumeration of the set

n⋃
k=1

[ik + 1, i′k − 1].

Set inductively
ξ0 = Sym(γ̄, δ; j1, {jk}) = Sym(γ̄, δ; j1, Rs),

ξl = Sym(γ̄, ξl−1; j
(l)
1 , {j(l)

k }) = Sym(γ̄, ξl−1; j
(l)
1 , Rs′l),

where j(l)
k = i′l + k and l ∈ [1, n− 1], k ∈ [1, pk]. Finally set

ξ̄ = Sym(γ̄, ξn; 1, [1, i1 − 1] ∪ [i′n + 1, n]) = Sym(γ̄, ξn; 1, R∅).

Example. For example, if

γ̄ = a1
_a2

_t−1_g1
_t_a3

_a4
_t−1_g2

_g3
_t_a5,

then
δ = e_e_t−1_e_t_e_e_t−1_e_e_t_e,

ξ0 = e_e_t−1_x_t_e_e_t−1_g2
_g3

_t_e, x = g−1
3 g−1

2

ξ1 = e_e_t−1_x_t_a−1
4

_a4
_t−1_g2

_g3
_t_e,

ξ̄ = y_a2
_t−1_x_t_a−1

4
_a4

_t−1_g2
_g3

_t_a5, y = a−1
5 a−1

2 .

Lemma 8.12. Let γ̄, ξ̄ be as above. If ζ is a trivial word of length |γ̄|, ζ and γ̄ are multipliable and ζ(i) ∈ G for
all i, then ρ(γ̄, ξ̄) ≤ ρ(γ̄, ζ).

Proof. Proof is similar to the proof of Lemma 8.9 using Lemma 8.11 instead of Lemma 8.8. �

Lemma 8.13. Let γ̄ be a word of the form

γ̄ = µ0
_t−1_ν0

_t_µ1
_ · · ·_µn−1

_t−1_νn−1
_t_µn,

for some words µi ∈Words(A), νi ∈Words(G). If j0, j1 ∈ [1, |γ̄|] are such that j0 < j1, γ̄(j0), γ̄(j1) ∈ {t, t−1}
and γ̄(j0) = γ̄(j1)−1, then γ̄

[
[1, |γ̄|] \ [j0, j1]

]
can be written as

γ̄
[
[1, |γ̄|] \ [j0, j1]

]
= µ′0

_t−1_ν′0
_t_µ′1

_ · · ·_µ′m−1
_t−1_ν′m−1

_t_µ′m,

for µi ∈Words(A), νi ∈Words(G) and m ≤ n.

Proof. The proof is similar to the proof of Lemma 8.10. �

Definition 8.14. Let (α, ζ) be a hereditary f -pair of length n. It is called rigid if for all i ∈ [1, n]

α(i) = t±1 =⇒ ζ(i) = α(i).

Here is an example of a rigid pair:

α = g0
_t_a1

_t−1_g1
_t_a2

_t−1_g2,

ζ = g−1
2 g−1

1
_t_e_t−1_g1

_t_e_t−1_g2.

Lemma 8.15. Let f ∈ G ∗ tAt−1, and let α ∈Words(G ∪ 〈t〉) be the reduced form of f . If (α, ζ) is a hereditary
f -pair, then there exists a rigid f -pair (α, ξ) such that ρ(α, ζ) ≥ ρ(α, ξ). Moreover, if for some i one has α(i) = t,
then ξ(i+ 1) ∈ A.
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Proof. Let (α, ζ) be hereditary and let Tζ be a structure tree for ζ. Let s ∈ Tζ and setQs = Rs\{m(Is),M(Is)}.
Let s1, . . . , sN ∈ Tζ be such that Rs = Is \

⋃N
i=1 Isi . Then using for each si Lemma 8.10 or Lemma 8.13

(depending on whether ζ(m(Is)) = t−1 or ζ(m(Is)) = t), we get

α[Qs] = β̄ = g(0,1)
_ · · ·_g(0,q0)

_t_a(1,1)
_ · · ·_a(1,p1)

_t−1_ · · ·
· · ·_t_a(n,1)

_ · · ·_a(n,pn)
_t−1_g(n,1) · · · g(n,qn),

or

α[Qs] = γ̄ = a(0,1)
_ · · ·_a(0,p0)

_t−1_g(0,1)
_ · · ·_g(0,q1)

_t_ · · ·
· · ·_t−1_g(n−1,1)

_ · · ·_g(n−1,qn)
_t_a(n,1) · · · a(n,pn),

where a(i,j) ∈ A and g(i,j) ∈ G.
Let ξ̄s be as in Lemma 8.9 or in Lemma 8.12 depending on whether α[Qs] = β̄ or α[Qs] = γ̄ and set

ξ[Qs] := ξ̄s, ξ(m(Is)) = α(m(Is)), ξ(M(Is)) = α(M(Is)) if s 6= ∅,

ξ[R∅] := ξ̄∅, if s = ∅.
Do this for all s ∈ Tζ . Then (α, ξ) is a rigid f -pair and

ρ(α, ζ) ≥ ρ(α, ξ) [by Lemma 8.9 and Lemma 8.12].

The moreover part follows immediately from the construction of ξ. �

Theorem 8.16. Let (G, d) be a tsi group, A < G be a closed subgroup, not necessarily of diameter at most one.
If d and d are as before (see the beginning of Section 8), then d = d if and only if diam(A) ≤ 1.

Proof. First we show that the condition diam(A) ≤ 1 is necessary. Suppose diam(A) > 1 and let a ∈ A be
such that d(a, e) > 1. Then

d(ata−1t−1, e) = d(a, e) + d(ta−1t−1, e) = d(a, e) + d(a−1, e) = 2d(a, e) > 2,

d(ata−1t−1, e) = d(ata−1t−1, aea−1e) ≤
d(a, a) + d(t, e) + d(a−1, a−1) + d(t−1, e) = 2.

And so d 6= d.
Suppose now diam(A) ≤ 1. Let f ∈ G ∗ tAt−1 be given and let α be the reduced form of f . If (α, ζ) is a

multipliable f -pair, then by Lemma 8.2 and Lemma 8.15 there is a rigid f -pair (α, ξ) such that ρ(α, ξ) ≤ ρ(α, ζ)
and α(i) = t implies ξ(i + 1) ∈ A. Hence we can view ξ as an element in Words(G ∪ tAt−1). Since ζ
was arbitrary, it follows that d(f, e) ≤ d(f, e). The inverse inequality d(f, e) ≤ d(f, e) follows from item
(iii) of Proposition 6.5. Thus d(f, e) = d(f, e), and, by the left invariance, d(f1, f2) = d(f1, f2) for all
f1, f2 ∈ G ∗ tAt−1. �

Proposition 8.17. Let (G, d) be a tsi group, A < G be a subgroup and d be the Graev metric on the free product
G ∗ 〈t〉. We can naturally view G ∗ tAt−1 as a subgroup of G ∗ 〈t〉. If A is closed in G, then G ∗ tAt−1 is closed in
G ∗ 〈t〉.

Proof. The proof is similar in spirit to the proof of item (ii) of Proposition 6.5, but requires some additional
work. Suppose the statement is false and there is f ∈ G ∗ 〈t〉 such that f 6∈ G ∗ tAt−1, but f ∈ G ∗ tAt−1. Let
α ∈ Words(G ∪ 〈t〉) be the reduced form of f , n = |α|. We show that this is impossible and f ∈ G ∗ tAt−1.
The proof goes by induction on n.

Base of induction. For the base of induction we consider cases n ∈ {1, 2}. If n = 1, then either f ∈ G or
f = tk for some k 6= 0. Since G < G ∗ tAt−1, it must be the case that f = tk. Let h ∈ G ∗ tAt−1 be such that
d(f, h) < 1, where d is the Graev metric on G ∗ 〈t〉. Let φ1 : G→ Z be the trivial homomorphism: φ1(g) = 0
for all g ∈ G; and let φ2 : 〈t〉 → Z be the natural isomorphism: φ2(tk) = k. By item (i) of Proposition 6.5
φ1 and φ2 extend to a 1-Lipschitz homomorphism φ : G ∗ 〈t〉 → Z. But dZ(φ(f), φ(h)) = |k| ≥ 1. We get a
contradiction with the assumption d(f, h) < 1.

Note that for any h ∈ G ∗ tAt−1

f ∈
(
G ∗ tAt−1

)
\ G ∗ tAt−1 =⇒ fh, hf ∈

(
G ∗ tAt−1

)
\ G ∗ tAt−1.
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Using this observation the case n = 2 follows from the case n = 1. Indeed, n = 2 implies α = g_tk or
α = tk_g for some g ∈ G, k 6= 0. Multiplying f by g−1 from either left or right brings us to the case n = 1.

Step of induction. Without loss of generality we may assume that α(n) = tk for some k 6= 0. Indeed,
if α(n) = g for some g ∈ G, then we can substitute fg−1 for f . Assume that α = α0

_tk1_g_tk2 , where
k1, k2 6= 0 and g ∈ G. We claim that k1 = 1, k2 = −1, and g ∈ A. Set

ε1 = min{d(α(i), e) : i ∈ [1, n]},

ε2 =

{
1 if ∀i α(i) ∈ G =⇒ α(i) ∈ A,
min{d(α(i), A) : α(i) ∈ G \A} otherwise.

And let ε = min{1, ε1, ε2}. Note that ε > 0.
Since f ∈ G ∗ tAt−1, there is h ∈ G ∗ tAt−1 such that d(f, h) < ε. Therefore there is a reduced simple

fh−1-pair (β, ξ) such that ρ(β, ξ) < ε. Let γ be the reduced form of h−1. Suppose first that k2 6= −1. Assume
for simplicity that β = α_γ (in general the first letter of γ may get canceled; the proof for the general case
is the same, it is just notationally simpler to assume that β = α_γ). Let Tξ be the slim evaluation tree for ξ,
and let s0 ∈ Tξ be such that n ∈ Rs0 .

We claim that n = m(Rs0). If this is not the case, then there is i0 ∈ Rs0 such that i0 < n and [i0 + 1, n−
1] ∩ Rs0 = ∅. Since α is reduced, i0 < n − 1. If I = [i0 + 1, n − 1], then ξ̂[I] = e and so there is j0 ∈ I such
that ξ(j0) = e (since otherwise ξ[I] would be reduced). Therefore

ρ(β, ξ) ≥ d(β(j0), ξ(j0)) = d(α(j0), e) ≥ ε1 ≥ ε.

Contradicting the choice of the pair (β, ξ).
Thus n = m(Rs0). Let j1, . . . , jp be such that

(i) jk ∈ Rs0 for all k ∈ [1, p];
(ii) jk < jk+1;

(iii) ξ(jk) 6= e;
(iv) ξ(j) 6= e and j ∈ Rs0 implies j = jk for some k.

In fact, we can always modify the tree to assure that ξ(j) 6= e for all j ∈ Rs0 , but this is not used here. In this
notation j1 = n. Since ρ(β, ξ) < 1, we get β(jk) = ξ(jk) = t±1 for all k ∈ [2, p]. If Ik = [jk + 1, jk+1 − 1] for
k ∈ [1, p− 1], then ξ̂[Ik] = e for all k, whence for any k ∈ [1, p− 1]

|{i ∈ Ik : ξ(i) = t}| = |{i ∈ Ik : ξ(i) = t−1}|.

We claim that ξ(j2) = t. Suppose not. Then ξ(j2) = t−1 and we can write γ = γ0
_t−1_γ1,

β = α0
_tk1_g_tk2_γ0

_t−1_γ1,

with |α|+ |γ0| = j2 − 1. Since γ̂0 = e we must have

|{i ∈ [1, |γ0|] : γ0(i) = t}| = |{i ∈ [1, |γ0|] : γ0(i) = t−1}|.

On the other hand
γ0 = g′0

_t_a′1
_t−1_ · · ·_t_a′m,

(g′0 may be absent) and each t is paired with t−1 except for the last one. Therefore

|{i ∈ [1, |γ0|] : γ0(i) = t}| = |{i ∈ [1, |γ0|] : γ0(i) = t−1}|+ 1.

Contradiction. Therefore ξ(j2) = t. Similarly, it is now easy to see that

ξ(j2) = t, ξ(j3) = t−1, ξ(j4) = t, . . . , ξ(jp) = t((−1)p).

Finally, since ξ̂[Rs0 ] = e, we get ξ(j1) = t−1 or ξ(j1) = e, depending on whether p is even or odd. But since
by assumption k2 6= 0 we get k2 = −1.

We have proved that k2 = −1. The next step is to show that g ∈ A. We have two cases.

Case 1. γ(1) ∈ G. In this case we have β = α_γ. Let s1 ∈ Tξ be such that n − 1 ∈ Rs1 . Similarly to the
previous step one shows that n− 1 = m(Rs1). Let Rs1 = {jk}pk=1, where jk < jk+1. In particular, n− 1 = j1.
Set Ik = [jk + 1, jk+1 − 1]. From ξ̂[Ik] = e it follows

|{i ∈ Ik : ξ(i) = t}| = |{i ∈ Ik : ξ(i) = t−1}|.
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Therefore ξ(jk) ∈ A for all k ∈ [2, p]. And so ξ(j1) ∈ A as well. Finally, if g 6∈ A, then

ρ(β, ξ) ≥ d(β(n− 1), ξ(n− 1)) ≥ d(g,A) ≥ ε2 ≥ ε.
And again we have a contradiction with the choice of (β, ξ).

Case 2. γ(1) = t. In this case α = α0
_tk1_g_t−1 and γ = t_a_t−1_γ0, for some a ∈ A and a word γ0. If

g 6∈ A then β = α0
_tk1_ga_t−1_γ0. And we are essentially in Case 1. Therefore by the proof of Case 1 we

get ga ∈ A, but then g ∈ A.

Thus g ∈ A. The proof of k1 = 1 is similar to the proof of k2 = −1 given earlier, and we omit the details.
We have shown that α = α0

_t_a_t−1. If f ′ = fta−1t−1, then α0 is the reduced form of f ′ and f ′ ∈
G ∗ tAt−1 \G ∗ tAt−1. We proceed by induction on the length of α. �

9. HNN EXTENSIONS OF GROUPS WITH TSI METRICS

We now turn to the HNN construction itself. There are several ways to build an HNN extension. We will
follow the original construction of G. Higman, B. H. Neumann and H. Neumann from [HNN49], because
their approach hides a lot of complications into the amalgamation of groups, and we have already constructed
Graev metrics on amalgams in the previous sections.

Let us briefly remind what an HNN extension is. Let G be an abstract group, A,B < G be isomorphic
subgroups and φ : A → B be an isomorphism between them. An HNN extension of (G,φ) is a pair (H, t),
where t is a new symbol and H = 〈G, t|tat−1 = φ(a), a ∈ A〉. The element t is called a stable letter of the
HNN extension.

9.1. Metrics on HNN extensions.

Theorem 9.1. Let (G, d) be a tsi group, φ : A→ B be a d-isometric isomorphism between the closed subgroups
A,B. Let H be the HNN extension of (G,φ) in the abstract sense, and let t be the stable letter of the HNN
extension. If diam(A) ≤ K, then there is a tsi metric d on H such that d|G = d and d(t, e) = K.

Proof. First assume that K = 1. Let 〈u〉 and 〈v〉 be two copies of the group Z of the integers with the usual
metric. Form the free products (G ∗ 〈u〉, du) and (G ∗ 〈v〉, dv), where du, dv are the Graev metrics. Since
diam(A) = diam(B) ≤ 1, by Theorem 8.16 the Graev metric on G ∗ uAu−1 is the restriction of du onto
G ∗ uAu−1, and, similarly, the Graev metric on G ∗ vBv−1 is just the restriction of dv. Let ψ : G ∗ uAu−1 →
G ∗ vBv−1 be an isomorphism that is uniquely defined by

ψ(g) = g, ψ(uau−1) = vφ(a)v−1, a ∈ A, g ∈ G.
By Theorem 8.16 ψ is an isometry. Also, by Proposition 8.17 G ∗ uAu−1 and G ∗ vBv−1 are closed subgroups
of G ∗ 〈u〉 and G ∗ 〈v〉 respectively. Hence by the results of Section 5 we can amalgamate G ∗ 〈u〉 and G ∗ 〈v〉
over G ∗ uAu−1 = G ∗ vBv−1. Denote the result of this amalgamation by (H̃, d). Then

uau−1 = vφ(a)v−1 for all a ∈ A,
and therefore v−1uau−1v = φ(a). If H = 〈G, v−1u〉, then (H, v−1u) is an HNN extension of (G,φ) and d|Hφ
is a two-sided invariant metric on H, which extends d.

This was done under the assumption that K = 1. The general case can be reduced to this one. If
d′ = (1/K)d, then d′ is a tsi metric on G, φ is a d′-isometric isomorphism and d′-diam(A) ≤ 1. By the above
construction there is a tsi metric d′ on H such that d′|G = d′. Now set d = Kd′. �

It is, of course, natural to ask if the condition of having a bounded diameter is crucial. The answer to this
question is not known, but here is a necessary condition.

Proposition 9.2. Let (G, d) be a tsi group, φ : A → B be a d-isometric isomorphism, and H be the HNN
extension of (G,φ) with the stable letter t. If d is extended to a tsi metric d′ on H, then

sup{d′(a, φ(a)) : a ∈ A} <∞.
Proof. If K = d′(t, e), then for any a ∈ A

d′(a, φ(a)) =d′(a, tat−1) = d′(a−1tat−1, e) =

d′(a−1tat−1, a−1eae) ≤ d′(t, e) + d′(t−1, e) = 2K.

Therefore sup{d′(a, φ(a)) : a ∈ A} ≤ 2K. �
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Question 9.3. Is this condition also sufficient? To be precise, suppose (G, d) is a tsi group, φ : A → B is a
d-isometric isomorphism between closed subgroups A,B, and suppose that

sup
{
d(a, φ(a)) : a ∈ A

}
<∞.

Does there exist a tsi metric d on the HNN extension H of (G,φ) such that d|G = d?

9.2. Induced conjugation and HNN extension. Recall that a topological group G is called SIN if for every
open U ⊆ G such that e ∈ U there is an open subset V ⊆ U such that gV g−1 = V for all g ∈ G. A metrizable
group admits a compatible two-sided invariant metric if and only if it is SIN.

Theorem 9.4. Let G be a SIN metrizable group. Let φ : A → B be a topological isomorphism between two
closed subgroups. There exist a SIN metrizable group H and an element t ∈ H such that G < H is a topological
subgroup and tat−1 = φ(a) for all a ∈ A if and only if there is a compatible tsi metric d on G such that φ becomes
a d-isometric isomorphisms.

Proof. Necessity of the condition is obvious: if d is a compatible tsi metric on H, then φ is d|G-isometric.
We show sufficiency. Let d be a compatible tsi metric on G such that φ is a d-isometric isomorphism. If
d′(g, e) = min{d(g, e), 1}, then d′ is also a compatible tsi metric on G, φ is a d′-isometric isomorphism, and
d′-diam(A) ≤ 1 (because d′-diam(G) ≤ 1). Apply Theorem 9.1 to get an extension of d′ to a tsi metric on H,
where (H, t) is the HNN extension of (G,φ). Then (H, t) satisfies the conclusions of the theorem. �

Corollary 9.5. Let G be a SIN metrizable group. Let φ : A→ B be a topological group isomorphism. If A and
B are discrete, then there is a topology on the HNN extension of (G,φ) such that G is a closed subgroup of H
and H is SIN and metrizable.

Proof. Let d be a compatible tsi metric on G. Since A and B are discrete, there exists constant c > 0 such that

inf{d(a1, a2) : a1, a2 ∈ A, a1 6= a2} ≥ c, inf{d(b1, b2) : b1, b2 ∈ B, b1 6= b2} ≥ c.

If d′(g1, g2) = min{d(g1, g2), c}, then d′ is a compatible tsi metric on G and φ is a d′-isometric isomorphism.
Theorem 9.4 finishes the proof. �

Corollary 9.6. Let (G,+) be an abelian metrizable group. If φ : G→ G is given by φ(x) = −x, then there is a
SIN metrizable topology on the HNN extension H of (G,φ) that extends the topology of G.

Proof. If d is a compatible tsi metric on G such that d-diam(G) ≤ 1, then φ is a d-isometric isomorphism and
we apply Theorem 9.4. �

Definition 9.7. Let G be a topological group. Elements g1, g2 ∈ G are said to be induced conjugated if there
exist a topological group H and an element t ∈ H such that G < H is a topological subgroup and tg1t

−1 = g2.

Example 9.8. Let (T,+) be a circle viewed as a compact abelian group, and let g1, g2 ∈ T. The elements g1

and g2 are induced conjugated if and only if one of the two conditions is satisfied:

(i) g1 and g2 are periodic elements of the same period;
(ii) g1 = ±g2.

Proof. The sufficiency of any of these conditions follows from Corollary 9.5 and Corollary 9.6. We need to
show the necessity. If g1 and g2 are induced conjugated, then they have the same order. If the order of gi
is finite, we are done. Suppose the order is infinite. The groups 〈g1〉 and 〈g2〉 are naturally isomorphic (as
topological groups) via the map φ(kg1) = kg2. This map extends to a continuous isomorphism φ : T → T,
because T is compact and 〈gi〉 is dense in T. But there are only two continuous isomorphisms of the circle:
φ = id and φ = −id. Thus g1 = ±g2. �

Example 9.9. Let G = TZ be a product of circles, and let S : TZ → TZ be the shift map S(x)(n) = x(n+ 1)
for all x ∈ TZ and all n ∈ Z. The group TZ is monothetic and abelian. If x = {an}n∈Z, where an’s and 1
are linearly independent over Q, then 〈x〉 is dense in TZ (by Kronecker’s theorem, see, for example, [HW08,
Theorem 443]). Since S is an automorphism, x and S(x) are topologically similar. We claim that x and S(x)
are not induced conjugated in any SIN metrizable group H.
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Proof. Suppose H is a SIN metrizable group, G is a topological subgroup of H and t ∈ H is such that
txt−1 = S(x). If φt : H → H is given by φt(y) = tyt−1, then φt(mx) = S(mx) for all m ∈ Z and hence, by
continuity and density of 〈x〉, φt(y) = S(y) for all y ∈ TZ. If d is a compatible tsi metric on H, then φt is a
d-isometric isomorphism. Therefore for x0 ∈ TZ,

x0(n) =

{
1/2 if n = 0;

0 otherwise,

we get
d(φmt (x0), e) = d(φmt (x0), φmt (e)) = d(x0, e) = const > 0,

but Sm(x0)→ 0, when m→∞. This contradicts φt(y) = S(y) for all y ∈ TZ. �
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