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ABSTRACT. We construct Graev ultrametrics on free products of groups with two-sided invariant ultrametrics and
HNN extensions of such groups. We also introduce a notion of a free product of general Polish groups and prove, in
particular, that two Polish groups G and H can be embedded into a Polish group T in such a way that the subgroup
of T generated by G and H is isomorphic to the free product G ∗H.

1. INTRODUCTION

Mark Graev [Gra51] gave a construction of two-sided invariant metrics on free groups which now bear
his name. Starting from a pointed metric space (X, d, e), the Graev metric δ is a two-sided invariant metric
on the free group F (X). The precise construction of δ will be explained below, but it is characterized by
being the largest two-sided invariant metric on F (X) that extends d, where we view X as being embedded
into F (X) in a natural way. In group theory, free groups are important, among other reasons, as surjectively
universal objects: any group is a factor of a free group. Graev metrics and their generalizations proved to be
very useful in constructing surjectively universal objects in various classes of metrizable groups.

For instance, let NN denote the Baire space: the space of infinite sequences of natural numbers with the
metric

d(x, y) = sup{ 2−n | n ∈ N, x(n) 6= y(n) }.
Let F (NN) be the group completion of F (NN) endowed with the Graev metric (with respect to any distin-
guished point).

Theorem (Folklore, see Theorem 2.11 in [Kec94]). The group F (NN) is surjectively universal in the class of
Polish groups that admit compatible two-sided invariant metrics.

An important question raised in [Kec94] and further advertised in [BK96] is whether there is a universal
Polish group. Motivated by this question, L. Ding and S. Gao [DG07b] constructed generalized Graev metrics,
and based on this construction Ding [Din12] answered the question of Kechris in the affirmative. In a recent
paper Gao [Gao13] addressed the question of the existence of surjectively universal Polish ultrametric groups
and gave yet another modification of Graev’s original definition. The latter paper of Gao motivates our study
of the Graev ultrametrics on free products of ultrametric groups.

1.1. Main results. The main results of this work are twofold. In Section 2 we give the constructions of
Graev ultrametrics for free products and HNN extensions of groups with two-sided invariant ultrametrics. In
particular we prove

Theorem (see Theorem 2.13). Let (G, dG) and (H, dH) be groups with two-sided invariant ultrametrics, and
let A = G ∩H be a common closed subgroup. There exists a two-sided invariant ultrametric on the free product
with amalgamation G ∗A H that extends the ultrametrics dG and dH .

Theorem (see Theorem 2.15). Let (G, d ) be a group with a two-sided invariant ultrametric d, A and B be
closed subgroups of G and φ : A → B be an isometric isomorphism. If diam(A) ≤ K, then there exists a
two-sided invariant ultrametric δ on the HNN extension H of (G,φ) which extends d and such that δ(t, e) = K,
where t is the stable letter of H.

While we follow closely the methods of [Slu12], the formalism for trivial words used in this paper is
different. We introduce a new notion of a maximal evaluation forest and argue that it provides a more unified
tool for studying Graev metrics on free products than the notion of an evaluation tree.
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In Section 3 we step outside of the two-sided invariant world and define a notion of a free product of
general Polish groups. The results of Section 3 are new for both the metric and the ultrametric settings.

Our notion of a free product depends on a number of parameters. We show that when these parameters
are “sufficiently large” the free product in our sense contains the usual free product of abstract groups as its
dense subgroup. To establish this fact, we show, in particular, the following

Theorem (see Theorem 3.8). Let G and H be Polish groups. There are a Polish group T and embeddings
ψG : G ↪→ T , ψH : H ↪→ T such that 〈ψG(G), ψH(H)〉 is naturally isomorphic to the usual1 free product G ∗H.
Moreover, if G and H admit compatible left invariant ultrametrics, then T can be chosen to admit such a metric
as well.

1.2. Notions and notations. To establish the terminology, recall that an ultrametric space is a metric space
(X, d ) in which the metric satisfies a strong form of the triangle inequality:

d(x1, x2) ≤ max
{
d(x1, x3), d(x3, x2)

}
for all x1, x2, x3 ∈ X. A Polish space is a separable completely metrizable topological space, and a Polish
group is a topological group which is a Polish space. By a metric group we mean a pair (G, d ), where G is a
topological group, d is a metric on G, and the topology induced by d coincides with the topology of G; such
metrics will be called compatible. A metric d on G is said to be left invariant if

d(fg1, fg2) = d(g1, g2)

for all f, g1, g2 ∈ G; the definition of a right invariant metric is symmetric. A metric d on G is two-sided
invariant if it is both left and right invariant.

We also need the notion of a group completion. If (G, d ) is a metric group with a left invariant metric d,
we let D be the metric on G defined by

D(g1, g2) = d(g1, g2) + d
(
g−1

1 , g−1
2

)
.

Note that D is compatible with the topology of G, but in general it is neither left nor right invariant. Let
(G,D) denote the Hausdorff completion of the metric space (G,D). It turns out that the group operations on
G admit a unique extension to G, and the complete metric D turns G into a topological group. The group G is
called the group completion of G. As a topological group, G does not depend on the choice of the compatible
left invariant metric d on G.

Given two (ultra)metric spaces (X, dX) and (Y, dY ) and a common subspace A = X∩Y , which is assumed
to be closed in both X and Y , with

dX(a1, a2) = dY (a1, a2) for all a1, a2 ∈ A,
we define the (ultra)metric amalgam of X and Y over A to be the metric space (Z, dZ), Z = X ∪ Y , dZ
extends both dX and dY , and for x ∈ X and y ∈ Y

dZ(x, y) =

 inf
a∈A

(
dX(x, a) + dY (a, y)

)
in the metric setting,

inf
a∈A

max
{
dX(x, a), dY (a, y)

}
in the ultrametric setting.

Note that (Z, dZ) is again an (ultra)metric space and that (X, dX) and (Y, dY ) are naturally subspaces of Z.
By taking isometric copies of spaces we can define the amalgamation of (X, dX) and (Y, dY ) over (A, dA)
whenever we have two isometric inclusions ιX : A→ X and ιY : A→ Y .

Two-sided invariant (ultra)metrics are characterized among left invariant (ultra)metrics by the following
inequality.

Proposition 1.1. Let d be a left invariant metric on a group G. The metric d is two-sided invariant if and only if

d(g1 · · · gn, f1 · · · fn) ≤
n∑
i=1

d(gi, fi)

for all gi, fi ∈ G and all n ∈ N. If d is an ultrametric, then moreover

d(g1 · · · gn, f1 · · · fn) ≤ max
1≤i≤n

{d(gi, fi)}.

1We mean a free product of abstract groups. No topology is considered on G ∗H here.
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With a left invariant pseudo-metric d on a group G we may associate a pseudo-norm N : G→ R+ defined
by N(f) = d(f, e) and satisfying for all g, g1, g2 ∈ G

(i) N(g) ≥ 0, N(e) = 0; N(g) > 0 for g 6= e if and only if d is a metric;
(ii) N(g) = N(g−1);

(iii) N(g1g2) ≤ N(g1) + N(g2);
If d is an ultrametric, then item (iii) becomes
(iii)′ N(g1g2) ≤ max{N(g1),N(g2)}.
If d is two-sided invariant, then
(iv) N(gg1g

−1) = N(g1).

The correspondence between left invariant metrics and norms is bijective: d(g1, g2) = N(g−1
1 g2) is a left

invariant metric on G for any norm N.
Expression [m,n] will denote the interval of natural numbers {m,m+ 1, . . . , n− 1, n}. For a set X we let

W(X) to denote the set of nonempty words in the alphabet X. The length of a word w ∈W(X) is denoted
by |w| and w(i) denotes its ith letter. If w ∈ W(X) is a word of length n and F ⊆ [1, n], F = {j1, . . . , jm}
with j1 < j2 < · · · < jm, then w(F ) denotes the word w(j1)w(j2) · · ·w(jm). The minimal element of F is
denoted by m(F ), and M(F ) denotes its maximal element: m(F ) = j1, M(F ) = jm.

1.3. Graev (ultra)metrics on free groups. We now describe the construction of Graev metrics and Graev
ultrametrics on free groups following [DG07b] and [Gao13]. Since these two constructions are very similar,
we give them in parallel. A pointed (ultra)metric space is a triple (X, d, e), where (X, d ) is an (ultra)metric
space and e ∈ X is a distinguished point. Let X−1 denote a copy of X with elements of X−1 being formal
inverses of the elements ofX with the agreementX∩X−1 = {e}, that is, e−1 = e. Extend d to an (ultra)metric
on X−1 by declaring d

(
x−1, y−1

)
= d(x, y) for all x, y ∈ X. Let (X, d, e) denote the (ultra)metric amalgam of

(X, d ) and (X−1, d ) over the subspace {e} = X ∩X−1, see Figure 1. We can extend the inverse x 7→ x−1 to a
function on X by setting (x−1)−1 = x. To summarize, starting from a pointed (ultra)metric space (X, d, e) we
construct in a canonical way a pointed (ultra)metric space (X, d, e), X is a subspace of X and the function
X 3 x 7→ x−1 is an isometric involution. We shall say that X is obtained from X by adding formal inverses.

FIGURE 1. X is the amalgam of X and X−1 over {e}.

By F (X) we denote the free group with generators X\{e} (therefore there is a slight abuse of notations, since
a proper notation would be F (X \ {e})). The set X is viewed as a subset of F (X), where e ∈ X is identified
with the identity element of the free group. We have a natural evaluation map W(X) 3 w 7→ ŵ ∈ F (X), ŵ
being just the reduced form of w. This map is surjective. For two words u1, u2 ∈ W(X) which have equal
lengths |u1| = n = |u2| we define

ρ(u1, u2) =


n∑
i=1

d
(
u1(i), u2(i)

)
in the metric case,

max
i≤n

{
d
(
u1(i), u2(i)

)}
in the ultametric case.

Finally, the Graev (ultra)metric δ on F (X) is defined by

δ(f1, f2) = inf
{
ρ(u1, u2)

∣∣ ui ∈W(X), ûi = fi, |u1| = |u2|
}
.

Theorem 1.2 (Graev [Gra51], Gao [Gao13]). The function δ is a two-sided invariant (ultra)metric on the
group F (X). Moreover, δ extends d on X.
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In order to describe an explicit formula for Graev metrics we need the notion of a match. Let F be a finite
set of natural numbers F = {ik}nk=1, i1 < i2 < · · · < in. A match on F is a bijection θ : F → F such that
θ
(
θ(i)

)
= i for all i ∈ F , and there are no k < l such that θ(ik) = ip, θ(il) = iq and k < l < p < q. In other

words we can think of a match as a set of arcs connecting elements of F such that two arcs are either disjoint,
or one of the arcs is contained in the other one, see Figure 2. We shall sometimes say that θ is a match on
a word w meaning that θ is a match on its letters, which we then identify with the set {1, . . . , |w|}. If θ is a
match on F and {j1, . . . , jm} ⊆ F such that j1 < j2 < · · · < jm, and θ({j1, . . . , jm}) = {j1, . . . , jm}, then the
restriction of θ onto the set {j1, . . . , jm} is a match on {j1, . . . , jm}, but we shall abuse the terminology and
say that θ itself is a match on {j1, . . . , jm} in this case.

FIGURE 2. An example of a match on the set {1, . . . , 9}.

If w ∈W(X) and θ is a match on w, the word wθ is defined by

wθ(i) =


w(i) if θ(i) > i,

e if θ(i) = i,

w
(
θ(i)

)−1
if θ(i) < i.

Is is straightforward to check that ŵθ = e for any w and any θ. For example, if θ is the match in Figure 2,
then for the following word w we have

w = x1 x2 x3 x4 x5 x6 x7 x8 x9

wθ = x1 x2 x−1
2 x4 x5 x−1

5 e x−1
4 x−1

1

Theorem 1.3 (Sipacheva–Uspenskij [SU87], Ding–Gao [DG07a], Gao [Gao13]). Let δ be the Graev (ultra)metric
on the free group F (X). For any f ∈ F (X)

δ(f, e) = min
{
ρ
(
w,wθ

) ∣∣ w is the reduced form of f , θ is a match on w
}
.

In order to explain the generalized Graev metrics we need yet another tool.

Definition 1.4. A scale on a pointed set (X, e) is a function Γ : X ×R+ → R+ satisfying for all x ∈ X and all
r ∈ R+

(i) Γ(e, r) = r, Γ(x, r) ≥ r;
(ii) Γ(x, r) = 0 if and only if r = 0;

(iii) Γ(x, ·) is a monotone increasing function with respect to the second variable;
(iv) lim

r→0
Γ(x, r) = 0.

By a scaled (ultra)metric space, or for brevity just a scaled space, we mean a tuple (X, d, e,Γ), where X is
obtained from some pointed (ultra)metric space X by adding formal inverses and Γ is a scale on X. We shall
denote scaled spaces with bold letters X, Y, etc. Let X = (X, d, e,Γ) be a scaled space. Following [DG07b]
and [Gao13], for a match θ on a word w ∈W(X) we define the number Nθ

Γ(w) = Nθ(w) by induction on the
length of w as follows.

(i) If w = x for some x ∈ X, then Nθ(w) = d(x, e); if w = x1x2 and θ(x1) = x2, then Nθ(w) = d(x1, x
−1
2 ).

(ii) If θ(x1) = xk and k < |w|, then w = u1u2 for some words ui ∈W(X) with |u1| = k, |u2| = n− k, θ is a
match on both u1 and u2, and we set

Nθ(w) =

{
Nθ(u1) + Nθ(u2) in the metric case,
max

{
Nθ(u1),Nθ(u2)

}
in the ultrametric case.
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(iii) If θ(x1) = xn, n = |w|, then let w = x1uxn for u ∈W(X), x1, xn ∈ X, θ is a match on u and we set

Nθ(w) =


d(x1, x

−1
n ) + min

{
Γ
(
x−1

1 ,Nθ(u)
)
, Γ
(
xn,N

θ(u)
)}

in the metric case,

max

{
d
(
x1, x

−1
n

)
,min

{
Γ
(
x−1

1 ,Nθ(u)
)
, Γ
(
xn,N

θ(u)
)}}

in the ultrametric case.

The Graev (ultra)norm NΓ = N of the scale Γ is defined by

N(f) = inf
{

Nθ(w)
∣∣ w ∈W(X), ŵ = f and θ is a match on w

}
.

Proposition 1.5 (Ding–Gao [DG07b], Gao [Gao13]). Let (X, d, e) be a pointed (ultra)metric space. The
function f 7→ N(f) is an (ultra)norm on the group F (X), and the latter is a topological group in the topology
of N. The natural inclusion map X ↪→ F (X) is an isometry.

We denote by F (X) the free group F (X) together with the Graev norm N and view X as a subset of F (X).
A canonical scale on an (ultra)metric group (G, d ) is a map SG : G× R+ → R+ defined by

SG(g, r) = max
{
r, sup

{
d(g−1hg, e)

∣∣ h ∈ G, d(h, e) ≤ r
}}
.

Let X = (X, d, e,Γ) be a scaled space, (G, dG) be an (ultra)metric group, and ΓG be a scale on G. A map
φ : X → G is called a Lipschitz morphism with respect to the scale ΓG if for all x, y ∈ X and all r ∈ R+

(i) φ(e) = e;
(ii) φ(x−1) = φ(x)−1;

(iii) dG
(
φ(x), φ(y)

)
≤ d(x, y);

(iv) ΓG(φ(x), r) ≤ Γ(x, r).
We say that φ is a Lipschitz morphism if it is a Lipschitz morphism with respect to the canonical scale SG. In
general we shall use the term Lipschitz to mean 1-Lipschitz.

Proposition 1.6 (Ding–Gao [DG07b], [Gao13]). Let φ be a Lipschitz morphism from a scaled space X into
an (ultra)metric group G. The map φ extends to a Lipschitz homomorphism φ : F (X)→ G. If G is completely
metrizable, then φ can be further extended to a continuous homomorphism φ : F (X)→ G.

2. GRAEV ULTRAMETRICS ON FREE PRODUCTS

Let (G, dG) and (H, dH) be ultrametric groups with two-sided invariant metrics, let A = G ∩ H be a
common closed subgroup; we assume that the metrics agree: dG(a1, a2) = dH(a1, a2) for all a1, a2 ∈ A. We
shall define a two-sided invariant ultrametric δ on the amalgamated free product G ∗A H.

The construction of Graev metrics on free products mimics that on the free groups. To start, we have a
natural evaluation map:

W(G ∪H) 3 w 7→ ŵ ∈ G ∗A H,
where ŵ is just the product of letters of w. Note that this map is surjective. If w ∈W(G∪H) and F ⊆

[
1, |w|

]
,

then the evaluation of the subword w(F ) is denoted by ŵ(F ) (as opposed to ŵ(F )). Let d be the ultrametric
on the amalgam G∪H of (G, dG) and (H, dH) over A. If u1, u2 ∈W(G∪H) are two words of the same length
|u1| = n = |u2|, we define ρ(u1, u2) to be the maximum of distances between the corresponding letters:

ρ(u1, u2) = max
i≤n

{
d
(
u1(i), u2(i)

)}
.

The Graev ultrametric on the free product G ∗A H is the function

δ(f1, f2) = inf
{
ρ(u1, u2)

∣∣ ûi = fi, |u1| = |u2|
}
.

Our goal is to prove

Theorem 2.1. The function δ is a two-sided invariant ultrametric on G ∗A H. Moreover, δ extends d on G ∪H.

As is typical for Graev metrics, it is straightforward to check that δ is a two-sided invariant pseudo-
ultrametric. The main difficulty is to show that distinct elements are never glued: δ(f1, f2) > 0 whenever
f1 6= f2.

Our arguments here are very similar to those in [Slu12], and we shall outline the proofs and give references
for more details. Essentially the proofs are repetitions of the proofs fore the metric case when the summation
operation is substituted with the operation of taking maximum, e.g., like in Proposition 1.1. Another, more
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important difference is that in [Slu12] the notion of an evaluation tree was used. In our approach here we
use instead the formalism of (maximal) evaluation forests, which has the advantage of working for both the
amalgams and HNN extensions in a uniform way.

The following proposition is essentially obvious.

Proposition 2.2 (cf. Lemma 5.1 [Slu12]). The function δ is a two-sided invariant pseudo-ultrametric on G∗AH.

Let N : G ∗A H → R+ be the pseudo-norm that corresponds to δ: N(f) = δ(f, e). In order to show that
δ(f1, f2) > 0 for f1 6= f2 it is enough to show that N is a genuine norm: N(f) > 0 for f 6= e.

A pair of words (α, ζ), α, ζ ∈W(G∪H), is said to be an f -pair if |α| = |ζ|, ζ̂ = e, and α̂ = f . The definition
of the function N can then be reformulated as

N(f) = inf
{
ρ(α, ζ)

∣∣ (α, ζ) is an f -pair
}
.

To get a better understanding of the function N, we shall gradually add restrictions on the f -pairs (α, ζ),
while still keeping the equality above.

2.1. Trivial words. Before going any further we need to understand the structure of trivial words in the
amalgam G ∗A H. A word ζ ∈W(G ∪H) is said to be trivial if ζ̂ = e.

We say that two letters x, y ∈ G ∪ H are multipliable if they both come from the same group: either
x, y ∈ G or x, y ∈ H. We also say that a word w ∈W(G ∪H) is multipliable if all of its letters come from the
same group.

Definition 2.3. Let (T ,�) be a poset, and let s, t ∈ T . We say that s is an immediate predecessor of t if s ≺ t
and for any s � s′ � t either s′ = s or s′ = t. If s is an immediate predecessor of t, then t is also said to be
an immediate successor of s. A finite rooted tree, or just a tree, is a finite poset (T ,�) with a distinguished
element ∅, called the root, such that for any t ∈ T

• t � ∅, i.e., the root ∅ is the largest element;
• { s ∈ T | t � s } is linearly ordered.

There is a natural graph structure on T : we put an edge between s and t whenever s is an immediate
predecessor of t or t is an immediate predecessor of s. With this assignment of edges T is a rooted tree in
the sense of the graph theory. In a tree T , any element t ∈ T , except for the root, has a unique immediate
successor, which we denote by t+. A leaf in a tree is an element without predecessors.

A finite forest is a finite poset (F ,�) which is a disjoint union of rooted trees F = tri=1Ti, where two
elements are incomparable if they belong to different trees. The root of the tree T is denoted by ∅(T ) and
F∅ denotes the set of roots of trees in F :

F∅ =
{
∅(T )

∣∣ T is a tree in F
}
.

An evaluation forest on an interval [1, n] is a forest F together with an assignment t 7→ It ⊆ [1, n] such that
for all t, s ∈ F

(i) It is a non-empty subinterval of [1, n];
(ii) [1, n] = tT I∅(T ), where the union is taken over all trees T in F ;

(iii) Is ∩ It 6= ∅ if and only if s and t are comparable in F ;
(iv) s � t if and only if Is ⊆ It;
(v) if s ≺ t, then m(It) < m(Is) ≤M(Is) < M(It), and in particular Is ⊂ It;

Let ζ ∈W(G ∪H) be a word of length n such that ζ̂ ∈ A and let F be an evaluation forest on [1, n]. We
say that F is an evaluation forest for ζ if additionally for all t ∈ F
(vi) ζ̂(It) ∈ A;

(vii) ζ(Rt) is multipliable, where Rt = It \
⋃
s≺t Is; the set Rt is called the reminder of the interval It.

We say that an interval I ⊆ [1, n] is decomposable (relative to ζ) if one can write I as a disjoint union of
non-trivial subintervals I = J1 t J2 with ζ̂(J1) ∈ A and ζ̂(J2) ∈ A; otherwise we say that I is indecomposable
(relative to ζ).

Let F be an evaluation forest for ζ. We say that F is maximal if for all t ∈ F
(viii) It is indecomposable;
(ix) if J ⊂ It is a non-empty subinterval with ζ̂(J) ∈ A, and for all s ≺ t either Is ⊆ J or Is ∩ J = ∅, then

J ⊆
⋃
s≺t Is.
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Example 2.4. The notion of a maximal evaluation forest is quite technical, and we illustrate it on a concrete
example. Consider the word ζ ∈W(G ∪H) given by

ζ = g1 b g2 h1 h2 g3 g4 h3 g5 g6 g7 h4 g8 g9 h5 h6 g10 h7 h8 g11

where gi ∈ G \A, hj ∈ H \A, and b ∈ A. Suppose also that the following identities hold:

g3g4 = a1 h5h6 = a3 h1h2a1h3a2h4 = a5 g1bg2a5g8 = a7

g5g6g7 = a2 h7h8 = a4 g9a3g10a4g11 = a6

for some ai ∈ A. In particular, ζ̂ = a7 · a6 ∈ A. Pictorially cancellations in ζ can be represented as follows.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ζ = g1 b g2 h1 h2 g3 g4 h3 g5 g6 g7 h4 g8 g9 h5 h6 g10 h7 h8 g11

The corresponding evaluation forest F1 for ζ is shown in Figure 3. But note that ζ has other evaluation
forests as well (for instance, the forest F2 in Figure 3).

FIGURE 3. Two evaluation forests for ζ. None of them is maximal.

Intuitively speaking an evaluation forest F for ζ captures the combinatorial structure of cancellations:
leaves of the forest are multipliable subwords that when multiplied produce an element from A, elements
whose all predecessors are leaves correspond to subwords that after the evaluation of leaves become mul-
tipliable and when multiplied yield and element from A, etc. Informally F is a set of subintervals with
multipliable remainders such that two intervals are either disjoint or one is contained in the other, and in the
later case the containment is strict in the sense of item (v).

The forests F1 and F2 in Figure 3 are not maximal. In F1 item (ix) fails: for I = [1, 13] we may add a
subinterval J = [2, 2]. The forest F2, which consists of a single tree, is not maximal because of the failure
of item (viii): we have I∅ = [1, 20] and I∅ = [1, 13] t [14, 20] with ζ̂

(
[1, 13]

)
∈ A and ζ̂

(
[14, 20]

)
∈ A. But

these are the only obstacles that prevent F1 and F2 from being maximal (provided that no further relations
between elements gi and hj hold; for instance, if also h1h2 ∈ A, then the forest in Figure 4 is not maximal
either). It is therefore easy to modify these forests to get a maximal forest F3, which is shown in Figure 4.

FIGURE 4. A maximal evaluation forest for ζ.

Item (ix) can be reformulated in a number of ways. If J ⊂ It is a subinterval with ζ̂(J) ∈ A such
that J ∩ Is = ∅ or Is ⊆ J for any s ≺ t, then the condition J ⊆

⋃
s≺t Is is equivalent to saying that

J =
⊔l
i=k Isi for some 1 ≤ k ≤ l ≤ m, where s1, . . . , sm are the immediate predecessors of t listed in the

order M(Isi) < m(Isi+1
). Yet another reformulation would be to say that J ∩Rt = ∅. So item (ix) prohibits

the situation shown in Figure 5, where stars represent elements of Rt.

Remark 2.5. If F is a maximal forest on ζ and i is such that ζ(i) ∈ A, then there must be a node t0 ∈ F such
that It0 = [i, i]. Indeed, if this were not the case, we would find the smallest t ∈ F such that ζ(i) ∈ It and
obtain a contradiction with (ix) for It and J = [i, i].
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FIGURE 5. Such an interval J with ζ̂(J) ∈ A is prohibited by item (ix).

Remark 2.6. While there is much less freedom in constructing maximal evaluation forests when compared to
general evaluation forests, there is still some amount of flexibility. Here is a concrete example. Let G = S6 –-
the symmetric group on six elements, and let A = {e} be the trivial subgroup. The group H does not matter,
since our word will use only letters from G. Consider elements of G

g1 = (12), g2 = (34), g3 = (12)(34), f1 = (12)(34)(56), f2 = (56).

The word
1 2 3 4 5 6 7

ζ = f1 g1 g2 g2 g1 g3 f2

is trivial and it has two maximal evaluation forests (see Figure 6).

FIGURE 6. Two distinct maximal evaluation forests for ζ, each consisting of a single tree.

Proposition 2.7. Any word ζ ∈W(G ∪H) with ζ̂ ∈ A has a maximal evaluation forest.

Proof. We prove the statement by induction on the length of ζ. If |ζ| = 1, then ζ = a for some a ∈ A, and
therefore we may take F to consist of a single root F = {∅} with I∅ = [1, 1].

Suppose the proposition has been proved for all words of length < n and let ζ have length n.

Step 1: Decomposing [1, n]. If [1, n] is decomposable and [1, n] = J1 t J2 with ζ̂(J1) ∈ A and ζ̂(J2) ∈ A, then
we may apply the assumption of induction to the words ζ1 = ζ(J1), ζ2 = ζ(J2) and obtain their maximal
evaluation forests F1 and F2 respectively. The maximal evaluation forest for ζ is then just the union of F1

and F2 with the natural assignment of intervals.

We therefore may assume that [1, n] is indecomposable.

Step 2: Typical case. Suppose that we can find a proper subinterval J ⊂ [1, n] such that |J | ≥ 2 and ζ̂(J) =
a ∈ A. Let ζ1 be the word obtained from ζ by evaluating ζ(J):

ζ1 = ζ
(
[1,m(J)− 1]

)
a ζ
(
[M(J) + 1, n]

)
.

Since |J | ≥ 2, the length of ζ1 is less than n, hence by the inductive assumption we may find an evaluation
forest F1 for ζ1 with the assignment of intervals t 7→ Jt ⊆

[
1, |ζ1|

]
. Let now It be the subintervals of [1, n]

obtained from Jt by inserting ζ(J) back into ζ1, or, more formally:

It =


[
m(Jt),M(Jt)

]
if m(Jt),M(Jt) < m(J),[

m(Jt),M(Jt) + |J | − 1
]

if m(Jt) ≤ m(J) ≤M(Jt),[
m(Jt) + |J | − 1,M(Jt) + |J | − 1

]
if m(J) < m(Jt),M(Jt).

By the maximality of F1 for ζ1, the intervals Jt are indecomposable relative to ζ1, but this may no longer
be true for the intervals It relative to ζ, because an interval It with m(J) ∈ It has more possibilities for
decomposition than the corresponding interval Jt.

The subword ζ(J) itself has length < n, and therefore the inductive assumption yields its maximal evalua-
tion forest F̃2. Since ζ1

(
m(J)

)
= a ∈ A, by Remark 2.5 there is some t0 ∈ F1 such that Jt0 = [m(J),m(J)].

The naive approach would be “to put the forest F̃2 instead of the node t0” (see Figure 7). This does not work
in general precisely because some of the intervals It may be decomposable.
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FIGURE 7. Naive approach of constructing F .

In order to fix this let t1 ∈ F1 be the maximal node with It1 being decomposable (note that m(J) ∈ It for
all decomposable intervals It, hence such intervals are comparable, and the largest node t1 exists). If all It are
indecomposable, we set t1 = t0. Note that t1 is not the root of F1, since I∅ is assumed to be indecomposable.
In particular ζ(It1) has length strictly less than n, and therefore by the assumption of induction it admits a
maximal evaluation forest F2 with intervals s 7→ Ks.

FIGURE 8. A possible example of the forest F2.

We define the forest F for ζ by
F = {s ∈ F1 | s 6� t1} t F2,

with the ordering extending the orderings of F1 and F2 and s ≺ t+1 for all s ∈ F2 (see Figure 8 and Figure 9).
The assignment of intervals F 3 t 7→ It is the natural one: we have already defined It for t ∈ F1 ∩F , and for
s ∈ F2 the interval Is is just the interval Ks shifted by m(It1)− 1:

Is =
[
m(Ks) +m(It1)− 1,M(Ks) +m(It1)− 1

]
.

FIGURE 9. The forest F = { s ∈ F1 | s 6� t1 } t F2.

We claim that F with s 7→ Is is a maximal evaluation forest for ζ. It is straightforward to check that F is
an evaluation forest and item (viii) follows immediately from the construction. It remains to check item (ix).
For s 6= t+1 item (ix) follows from the maximality of F1 and F2, we need to check it only for t+1 .
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Suppose we have a subinterval L ⊂ It+1
such that ζ̂(L) ∈ A, for all s ≺ t+1 either Is ∩ L = ∅ or Is ⊆ L

and L ∩ Rt+1 6= ∅. Let s1, . . . , sm be the immediate predecessors of t+1 , and let sk, . . . , sl be those of the
predecessors of t+1 that correspond to the roots of F2. Note that the intervals Isi are adjacent for k ≤ i < l:
M(Isi) + 1 = m(Isi+1). The idea is to construct an interval L̃ that will contradict item (ix) for t+1 in the forest
F1. We have several cases.

Case 1: L ∩ Isi = ∅ for all k ≤ i ≤ l. In this case the interval L naturally corresponds to a subword of ζ1;
let

L̃ =

{
L if M(L) < m(Isk),[
m(L)− |It1 |+ 1,M(L)− |It1 |+ 1

]
if M(Isl) < m(L).

We now get a contradiction with item (ix) of the maximality of F1 for ζ1 with Jt+1 and L̃.

We therefore may assume that either Isk ⊆ L or Isl ⊆ L. In either case, we may enlarge L to an interval
L′ defined by (see Figure 10)

L′ = L ∪
( l⊔
i=k

Isi

)
,

FIGURE 10. The construction of the interval L′. Here k = 2 and l = 4.

Case 2: L′ = It+1
. In this case L is either an initial subinterval of It+1 , or a terminal subinterval. In both

cases I+
t1 is decomposable contrary to the choice of t1.

Case 3: L′ 6= It+1
. Since Isi ⊂ L′ for all si that correspond to the roots of F2, we may let L̃′ be the

subinterval of Jt+1 that corresponds to L′:

L̃′ =
[
m(L′),M(L′)− |It1 |+ 1

]
.

We again get a contradiction with item (ix) and maximality of F1 for ζ1, since L̃′ is a proper subinterval of
Jt+1

by the assumptions of this case.

Step 3: Degenerate case. In the last step we suppose that one cannot find any J ⊂ [1, n] such that |J | ≥ 2 and
ζ̂(J) ∈ A. It is easy to see that in this case ζ must be multipliable. Let i1, . . . , im be the list of letters from
A: ζ(ik) ∈ A for all k ≤ m. We must have ik + 1 < ik+1, because if we had two consecutive letters from A
at indices, say, i and i+ 1, there would be a contradiction with the assumptions of this step for J = [i, i+ 1].
(To be precise, we get a contradiction if also n ≥ 3; if n = 2, and ζ = a1 a2, then the maximal evaluation
forest consists of two trivial trees [1, 1] and [2, 2].) Note also that 1 < i1 and im < n, because otherwise [1, n]
is decomposable. Put now F = {∅, t1, . . . , tm} and I∅ = [1, n], Itk = [ik, ik]. It is straightforward to check
that F is a maximal forest for ζ. �

2.2. Reductions. An f -pair (α, ζ) is said to be multipliable if α(i) is multipliable with ζ(i) for any i. (We
therefore use the word multipliable in two senses: a word is multipliable if all of its letters come from the
same group, while a pair of words is multipliable if for each index corresponding letters of two words are
from the same group.) Our first reduction states that in the definition of the norm function N one may take
only multipliable pairs.

Lemma 2.8 (cf. Lemma 5.2 [Slu12]). For any f ∈ G ∗A H
N(f) = inf

{
ρ(α, ζ)

∣∣ (α, ζ) is a multipliable f -pair
}
.

Proof. The idea of the proof is simple. Let (α, ζ) be an f -pair. Fix an ε > 0. If we have letters α(i) and ζ(i)
which are not multipliable, then by the definition of the metric d on G ∪H we can find an element a ∈ A
such that

d
(
α(i), ζ(i)

)
≥ max

{
d
(
α(i), a

)
, d
(
a, ζ(i)

)}
− ε.
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Let x = α(i) · a−1. We now substitute the word ‘x a’ into α for the letter α(i) and the word ‘e ζ(i)’ into ζ for
the letter ζ(i). In other words, if (α, ζ) is written as

i−1 i i+1

α = · · · α(i− 1) α(i) α(i+ 1) · · ·

ζ = · · · ζ(i− 1) ζ(i) ζ(i+ 1) · · ·

then the pair (α1, ζ1) after this substitution can be written as

i−1 i i+1 i+2

α1 = · · · α(i− 1) α(i) · a−1 a α(i+ 1) · · ·

ζ1 = · · · ζ(i− 1) e ζ(i) ζ(i+ 1) · · ·

One now does this procedure for all i such that α(i) and ζ(i) are not multipliable. The resulting pair (β, ξ)
is multipliable, and by the two-sided invariance of the metric d we have ρ(β, ξ) ≤ ρ(α, ζ) + ε. Since the pair
(α, ζ) and ε were arbitrary, we get

N(f) = inf
{
ρ(β, ξ)

∣∣ (β, ξ) is a multipliable f -pair
}
. �

Lemma 2.9 (cf. Lemma 5.4 and Lemma 5.5 [Slu12]). Let (α, ζ) be a multipliable f -pair, and let F be a
maximal evaluation forest for ζ. There exists a multipliable f -pair (β, ξ) such that

(i) |ξ| = |ζ|;
(ii) F is a maximal evaluation forest for ξ (with the same assignment t 7→ It);

(iii) ρ(α, ζ) = ρ(β, ξ);
(iv) ξ̂(It) = e for all t ∈ F ;

Proof. The proof is based on the following observation. Let a ∈ A, i < |α|, and define a pair (α1, ζ1) by
changing α(i) to α(i) · a−1, α(i+ 1) to a · α(i+ 1) and also ζ(i) to ζ(i) · a−1 and ζ(i+ 1) to a · ζ(i+ 1):

i i+1

α = · · · α(i) α(i+ 1) · · ·

ζ = · · · ζ(i) ζ(i+ 1) · · ·

↓

α1 = · · · α(i) · a−1 a · α(i+ 1) · · ·

ζ1 = · · · ζ(i) · a−1 a · ζ(i+ 1) · · ·

We call this operation a transfer operation. Observe that (α1, ζ1) is also a multipliable f -pair, ρ(α, ζ) =
ρ(α1, ζ1), and F is still a maximal evaluation forest for ζ1, since ζ1(j) ∈ A if and only if ζ(j) ∈ A. A typical
application of the transfer is for a = ζ̂(It) and i = M(It), which yields a pair (α1, ζ1) with ζ̂1(It) = e.

To obtain the desired pair (β, ξ), we apply the transfer operation for all intervals It, t ∈ F \ F∅. But this
has to be done in a consistent order. We traverse the forest F “from leaves to roots” and “from left to right”.
Somewhat more formally, we can define a function h : F → N by h(t) being “the longest downward path to a
leaf”. For example, h(t) = 0 if and only if t is a leaf, h(t) = 1 if and only if all the predecessors of t are leaves,
etc.

Let t1, . . . , tm be all the leaves of F ordered in such a way that M(Iti) < m(Iti+1). First we apply the
transfer for a = ζ̂(It1) at the index M(It1) and obtain a pair (α1, ζ1) such that ζ̂1(It1) = e; next we apply the
transfer with a = ζ̂1(It2) to this new pair at the index M(It2) and get (α2, ζ2) with ζ̂2(It1) = e and ζ̂2(It2) = e,
etc. It is important that at the second step we take a = ζ̂1(It2) as opposed to a = ζ̂(It2), since these may not
be equal when M(It1) + 1 = m(It2). Once we get (αm, ζm), we continue with nodes t such that h(t) = 1,
again ordering them “from left to right.”

From item (v) of the definition of the evaluation forest it follows that transfers at nodes with higher values
of h(t) do not ruin the equalities ζ̂k(Is) = e for nodes s with smaller h(s).

Note that transfer operations within different trees commute with each other. We continue the above
process for all t ∈ F \ F∅, and let (β1, ξ1) be the resulting pair. It satisfies ρ(β1, ξ1) = ρ(α, ζ), F is a maximal
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evaluation forest for ξ1, and ξ̂1(It) = e for all t 6∈ F∅. To achieve the latter equality for roots, we again apply
the transfer. Let ∅1, . . . ,∅p be the list of roots of F . As usually we assume that M(I∅i) < m(I∅i+1). We let
(β2, ξ2) be the transfer of (β1, ξ1) with a = ξ̂1(I∅1) at i = M(I∅1); let (β3, ξ3) be the transfer of (β2, ξ2) with
a = ξ̂2(I∅2

) at i = M(I∅2
); etc. We continue this process until the penultimate root ∅p−1: the pair (βp, ξp) is

obtained from (βp−1, ξp−1) by transfer with a = ξ̂p−1(I∅p−1
) at i = M(I∅p−1

).
We set (β, ξ) to be the pair (βp, ξp) and claim that it satisfies the conclusion of the lemma. All the items

follow immediately from the construction with one exception: we have to explain why is it the case that
ξ̂(I∅p

) = e. This follows from the observation that

ξ̂ = ξ̂(I∅1
) · ξ̂(I∅2

) · · · ξ̂(I∅p−1
) · ξ̂(I∅p

) = ξ̂(I∅p
),

and from ξ̂ = e, since ξ̂ = ζ̂ = e. �

Remark 2.10. In the context of the above lemma it follows that ξ(i) = e whenever ξ(i) ∈ A, since F is
maximal and any i with ξ(i) ∈ A corresponds to an interval It = [i, i] for some t ∈ F by Remark 2.5.

An f -pair (α, ζ) with a maximal evaluation forest F for ζ is said to be simple if for all t ∈ F one has
ζ̂(It) = e. Lemma 2.9 then implies that for any f ∈ G ∗A H

N(f) = inf
{
ρ(α, ζ)

∣∣ (α, ζ) is a simple f -pair
}
.

2.3. Symmetrization. Simple pairs are important, because they allow for the following symmetrization
operation. Let (α, ζ) be a multipliable f -pair with an evaluation forest F and let t ∈ F be a node with the
reminder Rt. Let i1 < i2 < · · · < im be some of the elements of this reminder ik ∈ Rt and suppose that:

• ζ(ik) 6∈ A for all k;
• ζ(j) = e for all j ∈ Rt \ {ik}mk=1;
• ζ̂(Is) = e for all immediate predecessors s ≺ t;
• ζ̂(It) = e.

A typical example of such a situation comes from a simple pair (α, ζ) with a maximal evaluation forest F : for
some t ∈ F with |It| ≥ 2 we may set {ik}mk=1 = Rt. Under these assumptions the symmetrization of (α, ζ)
with respect to {ik}mk=1 and k0, 1 ≤ k0 ≤ m, is the pair (α, ξ), where ξ is defined by

ξ(i) =


ζ(i) if i 6= ik for all k,
α(i) if i = ik for k 6= k0,

α(ik0−1)−1 · · ·α(i1)−1 · α(im)−1 · · ·α(ik0+1)−1 if i = ik0 .

Schematically symmetrization is showed on the following diagram:

i1 i2 ik0−1 ik0
ik0+1 in

α = · · · g1 · · · g2 · · · · · · gk0−1 · · · gk0 · · · gk0+1 · · · · · · gn · · ·

ζ = · · · ∗ · · · ∗ · · · · · · ∗ · · · ∗ · · · ∗ · · · · · · ∗ · · ·

↓

ξ = · · · g1 · · · g2 · · · · · · gk0−1 · · · x · · · gk0+1 · · · · · · gn · · ·

where x is such that

ξ̂(It) = ξ̂(Rt) = g1 · · · gk0−1xgk0+1 · · · gm = e,

i.e., x = g−1
k0−1 · · · g

−1
1 · g−1

m · · · g−1
k0+1.

If (α, ζ) is a multipliable pair, t ∈ F , and the list i1 < · · · < im of elements in Rt satisfies the requirements
for symmetrization, we call such a list symmetrization admissible.

Lemma 2.11 (cf. Lemma 5.6 [Slu12]). If (α, ζ) is a multipliable f -pair with an evaluation forest F , and (α, ξ)
is obtained from (α, ζ) by symmetrization according to a symmetrization admissible list {ik}mk=1, then (α, ξ) is
also a multipliable f -pair, F is an evaluation forest for ξ and ρ(α, ξ) ≤ ρ(β, ζ).
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Proof. The proof follows from the following calculations:

d
(
α(ik0), x

)
= d
(
α(ik0), α(ik0−1)−1 · · ·α(i1)−1 · α(im)−1 · · ·α(ik0+1)−1

)
= d
(
α(i1) · · ·α(in), e

)
[ by the two-sided invariance of d ]

= d
(
α(i1) · · ·α(in), ζ(i1) · · · ζ(in)

)
[ since ζ̂(Rt) = e ]

≤ max
k≤n

d
(
α(ik), ζ(ik)

)
[ by Proposition 1.1 ] �

Recall that a word α ∈ W(G ∪H) is said to be a reduced form of f ∈ G ∗A H if α̂ = f and α is reduced
in the sense that for no i letters α(i) and α(i + 1) are multipliable. We say that a simple f -pair with a
maximal evaluation forest (α, ζ) is reduced if α is a reduced form of f . Note that when A 6= {e}, the reduced
form of an element is not unique, but the length of the reduced form is nevertheless well-defined (see, for
instance, [Slu12, Lemma 2.4]).

Lemma 2.12 (cf. Lemma 5.8 [Slu12]). For any f ∈ G ∗A H
N(f) = inf

{
ρ(α, ζ)

∣∣ (α, ζ) is a reduced f -pair
}
.

Proof. We start with an observation. Let (α, β) be a multipliable f -pair and suppose that there is an index i
such that letters α(i), α(i+ 1), ζ(i) and ζ(i+ 1) are pairwise multipliable. We may shorten the pair (α, ζ) by
considering the products α(i) · α(i+ 1) and ζ(i) · ζ(i+ 1) as single letters. More formally, we let the word β
to be defined by

β(j) =


α(j) if j < i,

α(i) · α(i+ 1) if j = i,

α(j + 1) if j > i.

The word ξ is defined similarly using ζ instead of α. The pair (β, ξ) is also a multipliable f -pair, |β| < |α|,
and ρ(β, ξ) ≤ ρ(α, ζ), since by Proposition 1.1

d
(
α(i) · α(i+ 1), ζ(i) · ζ(i+ 1)

)
≤ max

{
d
(
α(i), ζ(i)

)
, d
(
α(i+ 1), ζ(i+ 1)

)}
.

Note that a word α ∈ W(G ∪H) with α̂ = f is a reduced form of f if and only if α is the shortest word
that evaluates to f : if α1 ∈W(G ∪H) is such that α̂1 = f , then |α1| ≥ |α|. Based on this Lemma 2.9 implies
that if (α, ζ) is a multipliable f -pair in which α is a reduced form of f , then there exists a simple f -pair (β, ξ)
such that ρ(β, ξ) ≤ ρ(α, ζ) and |β| = |α|, i.e., (β, ξ) is a reduced f -pair. Hence to prove the lemma it is
enough to show that for any non-reduced simple f -pair (α, β) there is a multipliable f -pair (β, ξ) such that
ρ(β, ξ) ≤ ρ(α, ζ) and |β| < |α|.

Pick a non-reduced simple f -pair (α, ζ). If i such that α(i) and α(i+1) are multipliable and α(i), α(i+1) 6∈
A, then α(i), α(i + 1), ζ(i), and ζ(i + 1) are pairwise multipliable and we may shorten the pair by our
observation above. We therefore need to consider the case α(i) ∈ A for some i. Let t ∈ F be such that i ∈ Rt.

In a typical situation |Rt| ≥ 2 and we may choose j ∈ Rt such that j 6= i. Let (α, ξ) be the symmetrization
of (α, ζ) according to Rt at j. By Lemma 2.11 ρ(α, ξ) ≤ ρ(α, ζ) and also ξ(i) = α(i) ∈ A. Since (α, ξ) is also
a multipliable f -pair, all the elements α(i), α(i+ 1), ξ(i), and ξ(i+ 1) are pairwise multipliable, and we may
finish the proof as before by shortening the pair (α, ξ).

Finally, if |Rt| = 1, then Rt = It = [i, i], hence ζ(i) = e, and again α(i), α(i + 1), ζ(i), and ζ(i + 1) must
be pairwise multipliable. �

Theorem 2.13 (cf. Proposition 5.9 and Theorem 5.10 [Slu12]). The function δ is a two-sided invariant
ultrametric on G ∗A H. Moreover, δ extends d on G ∪H.

Proof. By Lemma 2.12 we have

N(f) = inf
{
ρ(α, ζ)

∣∣ (α, ζ) is a reduced f -pair
}
.

First we show that δ extends d. If f ∈ G ∪H, then the unique reduced f -pair is the pair (f, e), whence

δ(f, e) = N(f) = d(f, e).

If g ∈ G and h ∈ H, then reduced gh−1-pairs are of the form (g1 h
−1
1 , e e), where g1 = g ·a and h−1

1 = a−1 ·h−1

for some a ∈ A. Therefore

d(g1, e) = d
(
g, a−1

)
, d

(
h−1

1 , e
)

= d
(
h−1, a

)
= d
(
a−1, h

)
.
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Since d by definition is the ultrametric amalgam of metrics dG and dH on A, it follows that δ(g, h) = d(g, h).
Thus δ extends d on G ∪H.

We show that N(f) > 0 for any f 6= e. Since we already know that δ extends d, it is enough to consider
the case f 6∈ A. Pick a reduced form α0 of f and let ε be such that d

(
α0(i), A

)
≥ ε > 0 for all i (here we

use that A is closed in both G and H). Note that if α is any other reduced form of f , then |α| = |α0| and
Aα(i)A = Aα0(i)A for all i, [Slu12, Lemma 2.4].

So let (α, ζ) be any reduced f -pair, and let F be an evaluation forest for ζ. Pick a leaf t ∈ F . The subword
ζ(It) is multipliable. Since α(i) is multipliable with ζ(i) for all i, and since α(i) is not multipliable with
α(i+ 1) (because α is reduced), we get that either ζ

(
m(It)

)
∈ A, or ζ

(
m(It) + 1

)
∈ A. In any case, there is

an index j such that ζ(j) ∈ A. This shows that

ρ(α, ζ) = max
i≤|α|

{
d
(
α(i), ζ(i)

)}
≥ d
(
α(j), ζ(j)

)
≥ d
(
α(j), A

)
= d
(
α0(j), A

)
≥ ε > 0.

And therefore also N(f) ≥ ε. This proves that N is a genuine ultranorm on G ∗A H. �

Remark 2.14. The above result is valid for any number of factors: if (Gλ, dλ)λ∈Λ is a family of ultrametric
groups with two-sided invariant ultrametrics dλ, A is a common closed subgroup of the groups Gλ, metrics
dλ agree on A, then one can define in a similar way a two-sided invariant Graev ultrametric δ on the free
product ∗AGλ over all λ ∈ Λ, which extends metrics dλ.

2.4. Graev ultrametrics on HNN extensions. Let G be a group, A,B < G be its subgroups, and φ : A→ B
be an isomorphism. One way to construct the HNN extension of (G,φ) is as follows. We start with free
products G ∗ 〈u〉 and G ∗ 〈v〉, where 〈u〉 and 〈v〉 are free groups on one generator. The map φ gives rise to
an isomorphism G ∗ uAu−1 → G ∗ vBv−1. Let H̃ be the amalgam of the groups G ∗ 〈u〉 and G ∗ 〈v〉 over
the subgroups G ∗ uAu−1 and G ∗ vBv−1 (which are canonically isomorphic to 〈G, uAu−1〉 and 〈G, vBv−1〉
respectively). The HNN extension of (G,φ) is the subgroups of H̃ generated by G and the element v−1u,
called the stable letter of the HNN extension.

The construction of Graev metrics given in Sections 8 and 9 of [Slu12] can be carried in the ultrametric
setting, essentially by substituting the max operation for the operation of summation. In particular, one can
prove the following.

Theorem 2.15 (cf. Theorem 9.1 [Slu12]). Let (G, d ) be an ultrametric group with a two-sided invariant metric
d, A and B be closed subgroups of G and φ : A → B be a d-isometric isomorphism. If diam(A) ≤ K, then
there exists a two-sided invariant ultrametric δ on the HNN extension H of (G,φ) which extends d and such that
δ(t, e) = K, where t is the stable letter of H.

3. FREE PRODUCTS OF POLISH GROUPS

In this section we introduce and investigate a notion of a free product of Polish groups. Our construction
goes as follows. First we define unions of scaled spaces and argue that the union of scaled spaces X and Y
gives rise to a natural notion of the free product of the free groups F (X) and F (Y). Next using the surjective
universality of groups F (X) we define free products of Polish groups as factors of F (X∪Y). Our construction
of a free product of Polish groups G and H is not canonical. It takes for input two scaled spaces X, Y, left
invariant metrics dG and dH on G and H respectively, and surjective Lipschitz morphisms φG : X → G and
φH : Y → H. Universal properties of our construction that are reminiscent of the universal properties for
free products of abstract groups are given in Proposition 3.6.

While the results of the previous section are companions of the corresponding earlier result in the metric
setting, the free product construction of this section is new for both metric and ultrametric cases.

Definition 3.1. Given two scaled (ultra)metric spaces X =
(
X, dX , e,ΓX

)
and Y =

(
Y , dY , e,ΓY

)
we define

their union X∪Y = (Z, d, e,Γ) to be the (ultra)metric amalgam of X and Y over {e} (see Figure 11). More
precisely, if Z is the (ultra)metric amalgam of the (ultra)metric spaces X and Y over the subspace {e}, then
as an (ultra)metric space X ∪ Y is obtained from Z by adding formal inverses. Note that Z is also the
amalgam of X and Y over {e}; in other words X ∪ Y = X ∪ Y . The scale Γ on Z is the union of scales ΓX
and ΓY :

Γ(z, r) =

{
ΓX(z, r) if z ∈ X,
ΓY (z, r) if z ∈ Y .
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FIGURE 11. Union of scaled spaces.

Let X and Y be scaled (ultra)metric spaces and let πX : X ∪ Y → X be the retract map:

πX(z) =

{
z if z ∈ X,
e if z ∈ Y .

This map is Lipschitz and it extends to a surjective group homomorphism πX : F (X ∪Y)→ F (X).

Proposition 3.2. The homomorphism πX : F (X ∪Y)→ F (X) is Lipschitz.

Proof. Let f ∈ F (X ∪ Y), NX be the Graev (ultra)norm on F (X), and N be the Graev (ultra)norm on
F (X ∪Y). Pick w ∈W(X ∪ Y ), ŵ = f , and a match θ on w. We need to show that NX

(
πX(f)

)
≤ N(f), and

for this it is enough to find a word u ∈W(X) and a match µ on u such that û = πX(f) and Nµ(u) ≤ Nθ(w)
(note that Nµ

X(u) = Nµ(u) because X is a subspace of X ∪ Y, and therefore we omit the subscript). If
w = z1 · · · zn with zi ∈ X ∪ Y , set u = z̃1 · · · z̃n with z̃i = πX(zi). We can view θ as being also a match on u.
Since πX : X ∪ Y → X is Lipschitz, we have d

(
zi, z

−1
j

)
≥ dX

(
z̃i, z̃

−1
j

)
for all i, j. By item (i) of the definition

of the scale, Γ(z, r) ≥ Γ
(
πX(z), r

)
for all r ∈ R+ and all z ∈ X ∪ Y . It now follows from item (iii) of the

scale and from the definition of the norm that Nθ(u) ≤ Nθ(w). �

The homomorphism πX is therefore continuous and extends to a continuous homomorphism

πX : F (X ∪Y)→ F (X).

Note that πX(f) = f for any f ∈ F (X) and that πX(f) = e holds true for all f ∈ F (Y).

Corollary 3.3. Let X and Y be scaled (ultra)metric spaces. The inclusion F (X) ↪→ F (X ∪Y) is isometric.

Proof. Let N denote the Graev (ultra)norm on F (X ∪Y), and NX be the Graev (ultra)norm on F (X). We
need to show that for all f ∈ F (X) one has N(f) = NX(f). By definition

NX(f) = inf
{

Nθ(w) : w ∈W(X), ŵ = f and θ is a match on w
}
,

N(f) = inf
{

Nθ(w) : w ∈W(X ∪ Y ), ŵ = f and θ is a match on w
}
,

and therefore N(f) ≤ NX(f). The reverse inequality follows immediately from πX(f) = f for f ∈ F (X) and
Proposition 3.2. �

Corollary 3.4. Inclusion F (X) ↪→ F (X ∪Y) extends to F (X) ↪→ F (X ∪Y).

It is natural to regard F (X ∪Y) as being the free product of groups F (X) and F (Y).

Let (G, dG) and (H, dH) be Polish groups with compatible left invariant (ultra)metrics, let X and Y be
separable scaled (ultra)metric spaces, and let φG : X→ G and φH : Y → H be surjective Lipschitz morphisms.
By Proposition 1.6 they extend to surjective homomorphisms

φG : F (X)→ G, φH : F (Y)→ H

with kernels KG and KH respectively. We note that as proved in [DG07b, Theorem 3.10], for any Polish group
G there are plenty of surjective Lipschitz morphisms φ : X → G, and moreover, one may always take X = NN.
Note also that G is isomorphic to F (X)/KG with the quotient topology (see, for instance, [BK96, Theorem
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1.2.6]). We shall identify G with F (X)/KG and H with F (Y)/KH . By Corollary 3.4 we may view KG and
KH as subgroups of F (X ∪Y). Let K◦G∗H be the normal subgroup of F (X ∪Y) generated by KG and KH :

K◦G∗H =
{
f1h1f

−1
1 · · · fnhnf−1

n

∣∣∣ n ∈ N, fi ∈ F (X ∪Y), hi ∈
〈
KG,KH

〉}
,

and let KG∗H be the closure of K◦G∗H , i.e., KG∗H is the closed normal subgroup in F (X ∪Y) generated by
KG and KH .

Lemma 3.5. In the setting above πX(KG∗H) = KG.

Proof. If g ∈ K◦G∗H is of the form

g = f1h1f
−1
1 · · · fnhnf−1

n , fi ∈ F (X ∪Y), hi ∈
〈
KG,KH

〉
,

then
πX(g) = πX(f1)πX(h1)πX(f1)−1 · · ·πX(fn)πX(hn)πX(fn)−1 ∈ KG,

because πX(hi) ∈ KG, πX(fi) ∈ F (X) and KG is a normal subgroup in F (X). Thus πX(K◦G∗H) = KG

and therefore also πX(KG∗H) = KG, since KG is closed in F (X), and hence π−1
X (KG) is also closed in

F (X ∪Y). �

A Polish free product of G and H over φG and φH is the group F (X∪Y)/KG∗H ; we denote it by G ∗φG φH
H.

The free product comes with homomorphisms ιG : G→ G ∗φG φH
H, ιH : H → G ∗φG φH

H and πG : G ∗φG φH
H →

G, πH : G ∗φG φH
H → H given by

ιG(fKG) = fKG∗H , ιH(fKH) = fKG∗H ,

πG(fKG∗H) = πX(f)KG, πH(fKG∗H) = πY (f)KH .

Note that πG and πH are well-defined by Lemma 3.5. Note also that πG
(
ιG(g)

)
= g and πH

(
ιH(h)

)
= h for

all g ∈ G and h ∈ H.

Proposition 3.6. Let X, Y, φG, φH and G ∗φG φH
H be as above. Let dG and dH be compatible left invariant

(ultra)metrics on G and H with respect to which φG and φH are Lipschitz morphisms.
(i) ιG and ιH are injective;

(ii) ιG and ιH are continuous;
(iii) πG and πH are continuous;
(iv) ιG(G) ∩ ιH(H) = {e};
(v) 〈ιG(G), ιH(H)〉 is a dense subgroup of G ∗φG φH

H.
Recall that SG denotes the canonical scale on G.
(vi) If (T, dT ) is a Polish (ultra)metric group, ψG : G → T , ψH : H → T are Lipschitz homomorphisms and

ST (ψG(g), r) ≤ SG(g, r), ST (ψH(h), r) ≤ SH(h, r) for all g ∈ G, h ∈ H and r ∈ R+, then there exists a
unique continuous homomorphism ψ : G ∗φG φH

H → T such that ψ ◦ ιG = ψG and ψ ◦ ιH = ψH .

Proof. (i) To show that ιG is injective it is enough to check that KG∗H ∩ F (X) = KG. If f ∈ KG∗H ∩ F (X),
then f = πX(f) ∈ πX(KG∗H) = KG by Lemma 3.5; hence f ∈ KG.

(ii) Let d be a compatible right-invariant (ultra)metric on F (X∪Y). It induces compatible right-invariant
(ultra)metrics on the factor groups F (X ∪Y)/KG∗H and F (X)/KG (see [Gao09, Lemma 2.2.8])

d1(f1KG∗H , f2KG∗H) = inf
{
d(f1k1, f2k2) : k1, k2 ∈ KG∗H

}
,

d2(f1KG, f2KG) = inf
{
d(f1k1, f2k2) : k1, k2 ∈ KG

}
.

With respect to the (ultra)metrics d1 and d2 the homomorphism ιG is Lipschitz, hence continuous.
(iii) It is enough to prove that πG is continuous at the identity, i.e., that fnKG∗H → KG∗H implies

πX(fn)KG → KG. The sequence fnKG∗H converges to KG∗H if and only if there is a sequence hn ∈ KG∗H
such that fnhn → e. This implies πX(fn)πX(hn) → e with πX(hn) ∈ KG by Lemma 3.5, and therefore
πG(fnKG∗H) = πX(fn)KG → KG.

(iv) If fKG∗H ∈ ιG(G) ∩ ιH(H), then fKG∗H = f1KG∗H = f2KG∗H for some f1 ∈ F (X) and f2 ∈ F (Y).
Therefore πX(fKG∗H) = πX(f1KG∗H) = πX(f2KG∗H), but πX(f1KG∗H) = f1KG and πX(f2KG∗H) = KG,
whereby f1 ∈ KG and thus fKG∗H = KG∗H .
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(v) This item is obvious, since the group generated by the images of ιG and ιH is nothing else but〈
F (X), F (Y)

〉
KG∗H .

(vi) Maps ψG◦φG : X → T and ψH◦φH : Y → T are Lipschitz morphisms and so is the map ζ : X ∪ Y → T
given by

ζ(z) =

{
ψG ◦ φG(z) if z ∈ X,
ψH ◦ φH(z) if z ∈ Y .

By Proposition 1.6 the map ζ extends to a continuous homomorphism ζ : F (X ∪Y) → T . Since ζ extends
both ψG ◦ φG and ψH ◦ φH , the kernel of ζ contains KG and KH , and therefore also KG∗H . Thus ζ factors to
a continuous homomorphism ψ : G ∗φG φH

H → T . Uniqueness follows from item (v). �

Note that items (i), (ii) and (iii) imply that ιG and ιH are embeddings. The homomorphisms ιG, ιH can
be extended to a homomorphism from the free product of abstract groups ι : G ∗ H → G ∗φG φH

H. Is the
homomorphism ι injective? We shall show in Corollary 3.9 that the answer is yes when φG and φH are “large
enough”.

Lemma 3.7. Let f ∈ G ∗H be a non-trivial element in the abstract free product. There are a Polish group T and
two embeddings ψG : G → T and ψH : H → T such that for the common extension of these homomorphisms
ψ : G ∗H → T one has ψ(f) 6= e. Moreover, if G and H admit compatible left invariant ultrametrics, then we
may find T that also admits a compatible left invariant ultrametric.

Proof. Here we deal with metric and ultrametric cases separately. First assume that G and H are general
Polish groups.

Let f ∈ G ∗ H be given. By conjugating f if necessary we may assume without loss of generality that
f “starts with g”, i.e, it is of the form f = gn−1hn−1 · · · g0h0 for some n ≥ 1 with non-trivial gi ∈ G and
hj ∈ H. By a theorem of Uspenskij [Usp86] (see also [Kec95, Theorem 9.18]) the group Homeo

(
[0, 1]ω

)
of homeomorphisms of the Hilbert Cube with the compact-open topology is a universal Polish group in
the following sense: any Polish group can be embedded into Homeo

(
[0, 1]ω

)
. In particular, G and H can

be embedded into Homeo
(
[0, 1]ω

)
; to simplify notations we assume that G and H are actual subgroups of

Homeo
(
[0, 1]ω

)
. Note that αHα−1 is a copy of H inside Homeo

(
[0, 1]ω

)
for any α ∈ Homeo

(
[0, 1]ω

)
. To prove

the lemma it is therefore sufficient to construct a homeomorphism α ∈ Homeo
(
[0, 1]ω

)
such that for some

x0 ∈ [0, 1]ω

gn−1αhn−1α
−1 · · · g0αh0α

−1(x0) 6= x0.

Pick any x0 ∈ [0, 1]ω and any x1 ∈ [0, 1]ω such that x1 6= x0 and h0(x1) 6∈ {x1, x0}; set x2 = h0(x1). Pick
any x3 ∈ [0, 1]ω such that x3 6∈ {x0, x1, x2} and g0(x3) 6∈ {x0, x1, x2, x3}; set x4 = g0(x3). We continue in this
fashion and construct a sequence (xk)4n

k=1 such that
(i) xi 6= xj for i 6= j;

(ii) hk(x4k+1) = x4k+2 for k = 0, . . . , n− 1;
(iii) gk(x4k+3) = x4k+4 for k = 0, . . . , n− 1.

FIGURE 12. Construction of the homeomorphism α.

For all m ∈ N the space [0, 1]ω is m-homogeneous: for tuples (y1, . . . , ym) and (z1, . . . , zm) of distinct
elements there is a homeomorphism α ∈ Homeo

(
[0, 1]ω

)
such that α(yi) = zi (see, for example, [vM89,

Exercise 2, p. 261]). Whence there is some α ∈ Homeo
(
[0, 1]ω

)
such that α(x4k+1) = x4k and α(x4k+2) =

x4k+3 for all k = 0, . . . , n− 1. For such an α we have

gn−1αhn−1α
−1 · · · g0αh0α

−1(x0) = x4n,

and x4n 6= x0 by construction.
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In the ultrametric setting a similar argument works with the following modifications. For the injectively
universal group we take S∞ (see [BK96, Theorem 1.5.1]) and note that without loss of generality we may
assume that G,H < S∞, and every non-trivial element in G and H has infinite support. This is so, because
we can embed diagonally S∞ into

∏
n∈N S∞ and view the latter again as a subgroup of S∞ by partitioning

the natural numbers into infinitely many infinite pieces.
Now for f = gn−1hn−1 · · · g0h0 in G ∗H using that supports of gi and hj are all infinite, we can easily find

α ∈ S∞ such that
gn−1αhn−1α

−1 · · · g0αh0α
−1 6= e.

Such an element α is again constructed as shown in Figure 12. �

Theorem 3.8. There are a Polish group T and embeddings ψG : G ↪→ T , ψH : H ↪→ T such that the group
〈ψG(G), ψH(H)〉 is naturally isomorphic to the group G ∗ H. Moreover, if G and H admit compatible left
invariant ultrametrics, then T can be chosen to also admit a compatible left invariant ultrametric.

Proof. Lemma 3.7 implies that for any non-trivial f ∈ G∗H we may fix a Polish group Tf and a homomorphism
ψf : G ∗H → Tf such that ψf |G : G→ Tf and ψf |H : H → Tf are embeddings and ψf (f) 6= e.

Let f ∈ G ∗H be given and assume that f has form gn−1hn−1 · · · g0h0 for some non-trivial gi ∈ G, hj ∈ H
and n ≥ 1. By continuity of ψf |G and ψf |H , and since ψf (f) 6= e, there are neighborhoods U (f)

i ⊆ G of gi and
V

(f)
j ⊆ H of hj such that e 6∈ ψG(U

(f)
n−1)ψH(V

(f)
n−1) · · ·ψG(U

(f)
0 )ψH(V

(f)
0 ). Therefore we can select a countable

family (fm)∞m=1 of elements fm ∈ G ∗H such that for any f ∈ G ∗H there is some m with ψfm(f) 6= e.
Let T =

∏
m Tfm be the direct product of the groups Tfm and let ψ : G ∗H be given by ψ(f)(m) = ψfm(f).

The homomorphisms ψ|G : G → T and ψ|H : H → T are embeddings. By the choice of the family (fm) we
also have ψ(f) 6= e for any non-trivial f ∈ G ∗H and therefore ψ is injective. �

Corollary 3.9. There are left invariant compatible (ultra)metrics dG and dH on G and H respectively and scales
ΓG and ΓH on (G, dG) and (H, dH) with the following property: if X and Y are (ultra)metric scaled spaces and
φG : X → G, φH : Y → H are surjective Lipschitz morphisms with respect to the scales ΓG and ΓH , then the
canonical homomorphism ι : G ∗H → G ∗φG φH

H is injective.

Proof. By Theorem 3.8 we may assume that G and H are closed subgroups of a Polish group T and that
〈G,H〉 is isomorphic to G ∗H. Let d be a compatible left invariant (ultra)metric on T and let dG and dH be
the restrictions of d onto G and H respectively. Finally, let ΓG and ΓH be the restrictions of ST onto G and H.
By item (vi) of Proposition 3.6 the maps φG and φH extend to a homomorphism φ : G ∗φG φH

H → T . Since
〈G,H〉 ∼= G ∗H, the homomorphism ι : G ∗H → G ∗φG φH

H must be injective. �
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