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Abstract— The behavior of self-driving cars must be com-
patible with an enormous set of conflicting and ambiguous
objectives, from law, from ethics, from the local culture, and so
on. This paper describes a new way to conveniently define the
desired behavior for autonomous agents, which we use on the
self-driving cars developed at nuTonomy, an Aptiv company.

We define a “rulebook” as a pre-ordered set of “rules”, each
akin to a violation metric on the possible outcomes (“real-
izations”). The rules are ordered by priority. The semantics
of a rulebook imposes a pre-order on the set of realizations.
We study the compositional properties of the rulebooks, and
we derive which operations we can allow on the rulebooks to
preserve previously-introduced constraints.

While we demonstrate the application of these techniques in
the self-driving domain, the methods are domain-independent.

I. INTRODUCTION

One of the challenges in developing self-driving cars is
simply defining what the car is supposed to do. The behavior
specification for a self-driving car comes from numerous
sources, including not only the vaguely specified “rules of the
road”, but also implementation limitations (for example, the
speed might be limited due to the available computation for
perception), and numerous other soft constraints, such as the
need of “appearing natural”, or to be compatible with the local
driving culture (any reader who never lived in Boston will be
surprised to discover what is the “Massachusetts left”). As
self-driving cars are potentially life-endangering, also moral
and ethical factors play a role [1]–[3]. For a self-driving
car, the “trolley problems” [4]–[6] are not idle philosophical
speculations, but something to solve in a split second. As of
now, there does not exist a formalism that allows to incorporate
all these factors in one specification, which can be precise
enough to be taken as regulation for what self-driving cars
designers must implement.

Formal methods have been applied to specify and verify
properties of complex systems. The main focus has been to
provide a proof that the system satisfies a given specification,
expressed in a formal language. In particular, specifications
written in temporal logics have been studied extensively [7]–
[12]. In self-driving cars, often times, not all the rules can be
satisfied simultaneously. Although there are formalisms that
allow specifying the degree of satisfaction of each rule, e.g.,
based on fuzzy logic or some measurable probability [13],
[14], as of now, there does not exist a formalism that allows
to incorporate different factors needed to be considered for
self-driving cars with a precise hierarchy in one specification.

The authors are with nuTonomy, an Aptiv company (Boston, MA, Zurich,
and Singapore). Please address correspondence to andrea@nutonomy.com.
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Fig. 1: The rulebooks formalism allows to specify the desired behavior
for an autonomous agent by using a pre-ordered set of rules that induce a
pre-order on the allowed outcomes. The rulebooks can be refined by a series
of manipulation operations.

In this paper we describe a formalism called “rulebooks”,
which we use to specify the desired behavior of the self-
driving cars developed at nuTonomy1. While the formalism
can be applied to any system, it is particularly well-suited
to handle behavior specification for embodied agents in an
environment where many, possibly conflicting rules need
to be honored. We define a “rulebook” as a set of “rules”
(Fig. 1b), each akin to a violation metric on the possible
outcomes. The rules can be defined analytically, using
formalisms such as LTL [15] or even deontic logic [16],
or the violation functions can be learned from data, using
inverse reinforcement learning [17], or any technique that
allows to measure deviation from a model. In the driving
domain, the rules can derive from traffic laws, from common
sense, from ethical considerations, etc.

The rules in a rulebook are hierarchically ordered to
describe their relative priority, but, following the maxim
“good specifications specify little”, the semantics of a rulebook
imposes a pre-order on the set of outcomes, which means that
the implementations are left with considerable freedom of
action. The rulebooks formalism is “user-oriented”: we define
a set of intuitive operations that can be used to iteratively

1Please note that the functionality described is not necessarily representa-
tive of current and future products by nuTonomy, Aptiv and their partners.
The scenarios discussed are simplified for the purposes of exposition. The
specification examples discussed are illustrative of the philosophy but not the
precise specification we use. The methodology described does not represent
the full development process; in particular we gloss over the extensive
verification and validation processes that are needed for safety-critical rules.



refine the behavior specification. For example, one might
define an “international rulebook” for rules that are valid
everywhere, and then have region-specific rulebooks for local
rules, such as which side the car should drive on.

While the rulebooks offer formidable generality in describ-
ing behavior, at the same time, when coupled with graph-based
motion planning, the rulebooks allow a systematic, simple,
and scalable solution to planning for a self-driving car:
1) Liability-, ethics-, culture-derived constraints are formu-

lated as rules (preferences over trajectories), either manually
or in a data-driven fashion, together with the rules of
the road and the usual geometric constraints for motion
planning.

2) Priorities between conflicting rules are established as a
rulebook (ideally, by nation-wide regulations based on
public discourse);

3) Developers customize the behavior by resolving ambigui-
ties in the rulebook until a total order is obtained;

4) Graph-based motion planning, in particular variations of
minimum-violation motion planning [18]–[22], allow to
generate the trajectories that maximally respect the rules
in the rulebooks.

In a nutshell, the above is how the nuTonomy cars work.
The topic of efficiently planning with rulebooks is beyond
the goals of this paper; here, we focus on the use of the
rulebooks as a specification, treating the planning process as
a black box.

II. RULEBOOKS DEFINITION

1) Realizations: Our goal is to define the desired agent
behavior. Here, we use the word “behavior” in the sense
of Willems [23] (and not in the sense of “behavior-based
robotics” [24], [25]), to mean that what we want to prescribe
is what we can measure objectively, that is, the externally
observable actions and outcomes in the world, rather than
the internal states of the agent or any implementation details.
Therefore, we define preference relations on a set of possible
outcomes, which we call the set of realizations Ξ. For a self-
driving car, a realization x ∈ Ξ is a world trajectory, which
includes the trajectory of all agents in the environment.

We use no concept of infeasibility. Sometimes the possible
outcomes are all catastrophically bad; yet, an embodied agent
must keep calm and choose the least catastrophic option.

2) Rules: Our “atom” of behavioral specification is the
“rule”. In our approach, a rule is simply a scoring function,
or “violation metric”, on the realizations.

Definition 1 (Rule). Given a set of realizations Ξ, a rule
on Ξ is a function r : Ξ→ R+.

The function r measures the degree of violation of its
argument. If r(x) < r(y), then the realization y violates the
rule r to a greater extent than does x. In particular, r(x) = 0
indicates that a realization x is fully compliant with the rule.

Any scalar function will do. The definition of the violation
metric might be analytical, “from first principles”, or be the
result of a learning process.

In general, the rulebooks philosophy is to pay particular
attention about specifying what we ought to do when the rule
has to be violated, as described in the following examples.

Example 2 (Speed limit). A naïve rule that is meant to
capture a speed limit of 45 km/h could be defined as:

r(x) =

{
0, if the car’s speed is always below 45 km/h,
1, otherwise.

However, this discrete penalty function is not very useful in
practice. The rulebooks philosophy is to assume that rules
might need to be violated for a greater cause. In this case, it
is advisable to define a penalty such as:

r(x) = interval for which the car was above 45 km/h.

The effect of this will be that the car will try to stay below
the speed limit, but if it cannot, it will minimize the time
spent violating the limit. Alternatively, one can penalize also
the magnitude of the speed violation:

r′(x) = r(x)× (vmax − 45 km/h).

Example 3 (Minimizing harm). It is easy enough to write a
constraint describing the fact that we do not want any collision;
but, assuming that a collision with a human is unavoidable
given the circumstances, what should the car do? In this case,
it would be advisable to define the violation function as:

r(x) = kinetic energy transferred to human bodies,

so that the car will try to avoid collisions, but, if a collision is
inevitable, it will try to reduce the speed as much as possible.

3) Rulebooks: A rulebook R is a pre-ordered set of rules.
We will use R both for the rulebook and for its underlying
set of rules.

Definition 4 (Rulebook). A rulebook is a tuple 〈R,≤〉,
where R is a finite set of rules and ≤ is a preorder on R.
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Fig. 2: Graphical representation of a rulebook. Rules are ordered vertically
with the most important rules being at the top.

Being a preorder, any rulebook may be represented as a
directed graph, in which each node is a rule, and an edge
between two rules r1 → r2 means that r1 ≤ r2, i.e., the rule r2
has higher rank. Fig. 2 gives an example of a rulebook with
7 rules. In this example, rules r1 and r2 are incomparable,
but both are greater than r5. Rules r3 and r4 are of the same
rank, meaning r3 ≤ r4 and r4 ≤ r3, and both are smaller
than r1, greater than r6 and incomparable to r5, r2, or r7.



Just like it might be convenient to learn some of the non-
safety-critical rules from data, it is possible to learn some of
the priorities from data as well. (See [26], [27] for a similar
concept in a different context.)

4) Induced pre-order on realizations: We now formally
define the semantics of a rulebook as specifying a pre-order on
realizations. Because a rulebook is defined as a pre-ordered
set of rules, not all the relative priorities among different rules
are specified. We will see that this means that a rulebook can
be used as a very flexible partial specification.

Given a rulebook 〈R,≤〉, our intention is to preorder all
realizations such that x . y can be interpreted as x being “at
least as good as” y, i.e., the degree of violation of the rules
by x is at most as much as that of y.

Definition 5 (Pre-order . and strict version < ). Given a
rulebook 〈R,≤〉 and two realizations x, y ∈ Ξ, we say that
x . y if for any rule r ∈ R satisfying r(y) < r(x) there
exists a rule r′ > r such that r′(x) < r′(y). We denote by <
the strict version of ..

Lemma 6. Let 〈R,≤〉 be a rulebook, let x, y, z ∈ Ξ be
realizations such that x . y, y . z, and let r ∈ R be a rule.
If either r(x) 6= r(y) or r(y) 6= r(z), then there exists a rule
r′ ≥ r such that r′(x) < r′(z).

Proof. We give a proof for r(x) 6= r(y); the case r(y) 6= r(z)
is analogous. If r(x) > r(y), then x . y guarantees existence
of r0 > r such that r0(x) < r0(y). If r(x) < r(y) to begin
with, then we may set r0 = r, and in either case we get r0 ≥ r
such that r0(x) < r0(y). We are done if r0(y) ≤ r0(z), as
one can take r′ = r0. Otherwise, y . z implies existence
of r1 > r0 such that r1(y) < r1(z). Again, we are done if
r1(x) ≤ r1(y), and if not, there has to be some rule r2 > r1
such that r2(x) < r2(y). Continuing in the same fashion, one
builds an increasing chain r ≤ r0 < r1 < r2 < · · · . Since
R is assumed to be finite, the chain has to stop, which is
possible only if rn(x) < rn(z) for some n.

Proposition 7. Let 〈R,≤〉 be a rulebook, and let x, y, z ∈ Ξ
be realizations.
1) The relation . on realizations is a preorder.
2) Two realizations x and y are equivalent if and only if

r(x) = r(y) for all rules r ∈ R.

Proof. 1) It is clear that . is reflexive, so we only need to
check transitivity. Suppose x . y, y . z, and let r ∈ R
be such that r(x) > r(z). Clearly either r(y) 6= r(x) or
r(z) 6= r(y), so Lemma 6 applies, producing r′ > r such
that r′(x) < r′(z), hence x . z as claimed.

2) Suppose towards a contradiction there are some real-
izations satisfying x . y and y . x, yet r(x) 6= r(y) for
some r ∈ R. Without loss of generality, let us assume that
r(x) < r(y). Since we have x . y . x, Lemma 6 produces
some r′ ≥ r such that r′(x) < r′(x), which is absurd. The
other direction (∀r, r(x) = r(y) =⇒ x ∼ y) is obvious.

Remark 8. In the special case in which the rulebook is a linear
order, the induced order on realizations is the lexicographic
order used in the literature in minimum-violation planning.

III. EXAMPLES IN THE DRIVING DOMAIN

In this section, we give a few examples of the types of rules
that are useful in the driving domain. Rather than describing
the full complexity of our production rules, which address
subtle nuances of behavior and idiosyncrasies and corner cases
of traffic laws, we prefer to give a few synthetic examples of
rulebooks and rulebooks refinement.

Example 9 (Safety vs. infractions). Consider the scenario
in Fig. 3. A vehicle is faced with an obstacle in front, and
is given a choice between two trajectories a and b. Suppose
the initial speed of the vehicle is sufficiently high, and there
is no time to stop, so collision is unavoidable if a is chosen.
Trajectory b, however, is collision free, but it violates a
different rule, since it intersects a double solid line.

The rulebooks take on this situation is the following. A
rule “not to collide with other objects” will have a higher
priority than the rule of not crossing the double line (Fig. 3b).
With this rulebook, the trajectory b will be chosen to avoid
the collision.
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b
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Fig. 3: The rulebook allows the agent to cross the double white line to avoid
a collision. (This assumes that there are no other agents outside the frame
that might trigger the “no-collision” rule.)
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Fig. 4: The rulebook instructs the agent to collide with the object on its
lane, rather than provoking an accident, for which it would be at fault.

Example 10 (Liability-aware specification). Let’s change
the situation slightly by assuming that trajectory b is also in
collision, but with a different agent — an oncoming vehicle
on the opposite lane. Under these assumptions, we may be
interested in choosing the outcome where the ego vehicle is
not at fault for the collision.

This behavior specification can be achieved by the rulebook
of Fig. 4b, having two collision rules, where one evaluates
the degree of collision, where the ego vehicle is at fault, and
the other evaluates collisions caused by third-party, which is
below the former in the rulebooks hierarchy. This will force
the ego vehicle to prefer trajectory a over b.

This example fully captures the concept of the
“responsibility-sensitive safety” model described in [28].



Example 11 (Partial priorities specification). Consider the
scenario depicted in Fig. 5a, where the vehicle encounters
an obstacle along its route. For simplicity, we focus on four
discrete representative trajectories, called a, b, c, d. A minimal
rulebook that allows to deal with this situation would contain
at least four rules, detailed below. For simplicity, we write
the violation metrics as binary variables having value 0 or
1 on the test trajectories, while in practice these would be
continuous functions.
1) Rule β - Blockage, attaining value 1 if the trajectory is
blocked by an obstacle, and 0 otherwise:

β(x) =

{
0, for x = b, c, d;

1, for x = a.

2) Rule λ - Lane Keeping, 1 iff the trajectory intersects the
lane boundary:

λ(x) =

{
0, for x = a, b;

1, for x = c, d.

3) Rule κ - Obstacle clearance, 1 iff the trajectory comes
closer to an obstacle than some threshold C0:

κ(x) =

{
0, for x = c, d;

1, for x = a, b.

Remark 12 (Learning while preserving safety). While param-
eters such as the minimum clearance from an obstacle C0

can be specified manually, in practice, given an adequate data
analytics infrastructure, they are great candidates to be learned
from the data. This allows the car to adapt the behavior to
the local driving culture. By still having the safety-preserving
rules at the top of the hierarchy, the rulebooks allow the
system to be adaptive without ever compromising safety, not
even with adversarial data. (See [29] for a similar principle
in a different context.)

4) Rule α - Path length, whose value is the length of the
trajectory:

α(a) < α(b) < α(c) < α(d).

Out of these rules, we can make different rulebooks
by choosing different priorities. For example, defining the
rulebook R with ordering α < κ < β and α < λ < β,
depicted in Fig. 5b, the following order on trajectories is
imposed: b < a and c < d < a. Note that b is not comparable
with either d or c. This is an important feature of a partial
specification: we leave freedom to the implementation to
choose the details of the behavior that we do not care about.

IV. ITERATIVE SPECIFICATION REFINEMENT WITH
RULEBOOKS MANIPULATION

We formalize this process of iterative specification refine-
ment (Fig. 1c), by which a user can add rules and priority
relations until the behavior of the system is fully specified to
one’s desire.

a

b
c

d
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(a) Trajectories available to a vehicle before an avoidance maneuver.
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Fig. 5: Example involving an avoidance maneuver.

Example 13. Regulations in different states and countries
often share a great deal of similarity. It would be ineffective
to start the construction of rulebooks from scratch in each
case; rather, we wish to be able to define a "base" rulebook
that can then be particularized for a specific legislation by
adding rules or priority relations.

1) Operations that refine rulebooks: We will consider three
operations (Fig. 6):
1) Priority refinement (Def. 14): this operation corresponds

to adding another edge to the graph, thus clarifying the
priority relations between two rules.

2) Rule aggregation (Def. 16): this operation allows to
“collapse” two or more equi-ranked rules into one.

3) Rule augmentation (Def. 17): this operation consists in
adding another rule at the lowest level of priority.
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2) Priority refinement: The operation of refinement adds
priority constraints to the rulebook.

Definition 14. An allowed priority refinement operation
of a rulebook 〈R1,≤1〉 is a rulebook 〈R1,≤2〉, where the
order ≤2 is a refinement of ≤1.

Example 15. Continuing the example in Fig. 5, we can create
two refinements of the rulebook by adding priority constraints



that resolve the incomparability of rules κ and λ one way or
the other. For example, choosing the totally ordered rulebook
α→ κ→ λ→ β, the order on trajectories is b < c < d < a,
while for the rulebook α → λ → κ → β, the order is
c < d < b < a.

3) Rule aggregation: Suppose that a rulebook includes
two rules that are in the same equivalence class. The minimal
example is a rulebook 〈R,≤〉 that has two rules r1, r2 such
that r1 ≤ r2 and r2 ≤ r1. The induced order . on the
realizations is that of the product order:

x . y iff r1(x) ≤ r1(y) ∧ r2(x) ≤ r2(y).

We might ask whether we can “aggregate” the two rules
into one. The answer is positive, given the conditions in the
following definition.

Definition 16 (Rule aggregation operation). Consider a
rulebook 〈R,≤〉 in which there are two rules r1, r2 ∈ R
that are in the same equivalence class defined by ≤. Then it
is allowed to “aggregate” the two rules into a new rule r′,
defined by

r′(x) = α(r1(x), r2(x)),

where α is an embedding of the product pre-order into R+.
In particular, allowed choices for α include linear combina-

tions with positive coefficients (α(r1, r2) = a r1 + b r2) and
other functions that are strictly monotone in both arguments.

4) Rule augmentation: Adding a rule to a rulebook is a
potentially destructive operation. In general, we can preserve
the existing order only if the added rule is below every other.

Definition 17 (Rule augmentation). The operation of rule
augmentation consists in adding to the rulebook R a rule r′

such that r′ < r for all r ∈ R.
5) Properties preserved by the three operations: We will

show that the three operations create a rulebook that is a
refinement of the original rulebook, in the sense of Def. 18.

Definition 18. A rulebook 〈R1,≤1〉 a strict refinement of
〈R2,≤2〉 if its induced strict pre-order <2 refines <1.

One can prove this theorem:
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Fig. 7: Trajectories planned in the unavoidable collision scenario with
different versions of the rulebooks. (See attached videos for experiment.) The
orange rectangles are the traffic vehicles, moving towards the ego vehicle
at the speed of 1.0 m/s. The red trajectory is chosen when collision at
fault and collision caused by third-party are treated equally whereas the
green trajectory is chosen when collision at fault is higher in the rulebooks
hierarchy than the collision caused by third-party.

Theorem 19. Applying one of the three operations (augmen-
tation, refinement, aggregation) to a rulebook R1 creates a
rulebook R2 that is a strict refinement of R1 in the sense
of Def. 18.

The proofs for these and ancillary results are in the
appendix.

V. EXPERIMENTS

We show planning results for different rulebooks for the
nuTonomy R&D platform (Renault Zoe). The experiments
assume left-hand traffic (Singapore/UK regulations).

1) Unavoidable collision: This experiment illustrates un-
avoidable collision as described in Example 10. We set up the
scenario (Fig. 7) such that the planner is led to believe that 2
vehicles instantaneously appear at approximately 12 m from
the ego vehicle and slowly move towards the ego vehicle
at 1.0 m/s, while the speed of the ego vehicle is 9.5 m/s.
Fig. 7 shows the belief state when the vehicles first appear.
We also limit the allowed deceleration to 3.5 m/s2. It can be
verified that collision is unavoidable under these conditions.

For any given trajectory x, we define the collision cost as

µ(x) = vx,col, (1)

where vx,col is the expected longitudinal speed of the ego
vehicle at collision, assuming that the ego vehicle applies the
maximum deceleration from the current state.

First, consider the case where the collision cost (1) is
applied to any collision. In this case, it is more preferable to
swerve and hit the traffic vehicle in the opposite lane since
the swerving trajectory gives the ego vehicle more distance
to decelerate; hence, reducing the expected speed at collision.

Next, collision at fault µ1 is differentiated from collision
caused by third-party µ2 with priority µ2 < µ1. The optimal
trajectory in this case is to stay within lane and collide with
the traffic vehicle that is moving against the direction of
traffic.

2) Clearance and lane keeping: In this experiment, we
demonstrate how different rulebooks in Example 11 lead to
different behaviors when overtaking a stationary vehicle. The
blockage cost β, lane keeping cost λ and length α are defined
as in Example 11, but we re-define the clearance cost as

κ(x) = max(0, C0 − lx), (2)

where lx is the minimum lateral distance between the
stationary vehicle and trajectory x.

In particular, we consider two different rulebooks (Fig. 5):

R1 = {α < λ < κ < β}, (clearance first) (3)
R2 = {α < κ < λ < β}. (lane keeping first) (4)

The rulebook described in (4) corresponds to the case where
satisfying the lane keeping rule is preferred over satisfying
the clearance rule whereas the rulebook described in (3)
corresponds to the case where satisfying the clearance rule
is preferred over satisfying the lane keeping rule.

Fig. 8 shows the optimal paths found by the system in the
two cases. With rulebook R2, the optimal trajectory is such



that the vehicle footprint remains within lane, leading to the
violation of the clearance rule. In contrast, when rulebook R1

is applied, the trajectory crosses the lane boundary to give
sufficient clearance from the stationary vehicle.
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Fig. 8: Trajectories planned in the vehicle overtaking scenario with different
rulebooks. (See attached videos for experiment.) The orange rectangle is
the stationary vehicle. The red trajectory is when the rulebook (4) is used,
whereas the green trajectory is when the rulebook (3) is used.

3) Lane change near intersection: Consider the scenario
where the autonomous vehicle needs to perform a lane change
in the vicinity of an intersection (Fig. 9). The vehicle needs
to turn left at the intersection; therefore, it is required to be
on the left lane before entering the intersection. However,
there is a stationary vehicle that prevents it from completing
the maneuver at an appropriate distance from the intersection.

For the simplicity of the presentation, we assume that
any trajectory x only crosses the lane boundary once at ηx.
The lane change near intersection cost is then defined as
ζ(x) = max(0, Dlc − dint(ηx)), where Dlc is a predefined
threshold of the distance from intersection, beyond which
changing lane is not penalized and for any pose p, dint(p) is
the distance from p to the closest intersection.

Additionally, we define the turning cost τ(x) as the L1-
norm of the heading difference between x and the nominal
trajectory associated with each lane. Consider the case where
ζ and τ are in the same equivalence class and these rules are
aggregated (16) as

rζ,τ (x) = ζ(x) + cττ(x), (5)

where cτ > 0 is a predefined constant. In this experiment,
we consider the aggregated cost rζ,τ and the blockage cost β
defined in Example 11 with priority rζ,τ < β. Fig. 9 shows
how the choice of cτ affects the optimal trajectory.
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Fig. 9: Trajectories planned in the lane changing near intersection scenario.
(See attached videos for experiment.) The orange rectangle is the stationary
vehicle at pose pv with dint(pv) < Dlc. The green trajectory is the optimal
trajectory for cτ = 0 whereas the red trajectory is the optimal trajectory for
some cτ > 0.

VI. DISCUSSION AND FUTURE WORK

We have shown by way of a few examples how the
rulebooks approach allows easy and intuitive tuning of self-
driving behavior. What is difficult to convey in a short paper
is the ability of the formalism to scale up. In our production
code at nuTonomy, corresponding to level 4 autonomy in
a limited operating domain, our rulebooks have about 15
rules. For complete coverage of Massachusetts or Singapore
rules, including rare corner cases (such as “do not scare farm
animals”), we estimate about 200 rules, to be organized in
about a dozen ordered priority groups (Fig. 10).

Except the extrema of safety at the top, all the other
priorities among rule groups are somehow open for discussion.
What we realized is that some of the rules and rules priorities,
especially those that concern safety and liability, must be part
of nation-wide and global regulations to be developed after
an informed public discourse; it should not be up to engineers
to choose these important aspects. The rulebooks formalism
allows to have one such shared, high-level specification that
gives minimal constraints to the behavior; then, the rest of the
rules and priority choices can be considered “implementation
details” that might change from manufacturer to manufacturer.
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1) who can drive what, when and where (this is kind of automatically satisfied, e.g., by road releases, certification of a vehicle, AV license, 
geofencing)
2) speed limits
3) direction of travel
4) right of way when merging with traffic
5) right of way when crossing traffic
5’) right of way when crossing non-automotive traffic (pedestrians, but also railroads, bike paths, etc.)
6) overtaking
7) signaling (active, as in turn indicators, but also motion )
8) where to stop
9) where to park
10) safety clearance from other actors (cars, bicycles, pedestrians, etc.

 7

no collisions

no crossing double lines

no collisions at fault

no crossing double lines

no collisions

R R

when merging

when crossing

Overtaking

Signalling

Clearance

Safety of humans

Passenger comfort

Own progress towards goal

At fault

Not at fault

Safety of !
animals 

Safety of property 
… …

Right of way

Stopping rules

Parking rules

Speed limits

Victimless violations Perception of safety

 Physical interaction

Operation limits
lane direction drivable areas …

Predictability

Unwritten  
local !
rules

Helping flow of traffic

Written rules

…

… …

…

…

…

Fig. 10: Illustrative example of possible rule groups for an autonomous taxi
in an urban driving scenario. At the top of the hierarchy there are rules that
guarantee safety of humans; at the bottom, we have comfort constraints and
progress goals. At the top, the rules are written analytically; at the bottom,
some rules are learned from observed behavior. Rules at the bottom also
tend to be platform- and implementation- specific. Except for human safety
at the top, all other priorities among rule groups are open for discussion.
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APPENDIX I
ORDERS AND PREORDERS

This appendix recalls some standard definitions used in
the development of the rulebooks formalism.

Definition 20. A preorder on a set Z is a reflexive transitive
binary relation ., i.e., a binary relation such that for all z ∈ Z
one has z . z and for all x, y, z ∈ Z

x . y and y . z =⇒ x . z.

Given a preorder (Z,.) and y, z ∈ Z, the notation y < z is
shorthand for y . z and z 6. y. A preorder is said to be total
if additionally for any x, y ∈ Z either x . y or y . x.

With any preorder one associates an equivalence relation:
elements x, y ∈ Z are equivalent (denoted as x ∼ y) whenever
x . y and y . x. If this equivalence relation is trivial (i.e.,
x ∼ y if and only if x = y ), then we say that . is a partial
order on Z. We use x ≤ y to denote (x < y or x = y). In
particular, one always has ≤⊆., and a preorder is an order
if and only if ≤=..

Definition 21. An embedding between preorders Z1 and Z2

is a map φ : Z1 → Z2 such that for all x, y ∈ Z1 one has

x . y =⇒ φ(x) . φ(y) and x < y =⇒ φ(x) < φ(y).

Note that for any embedding φ, equivalence x ∼ y implies
φ(x) ∼ φ(y).

Definition 22. Given a set Z and two preorders .1, .2 on
it, we say that .2 refines .1 if the identity map id : Z → Z
is an embedding from (Z,.1) onto (Z,.2).

APPENDIX II
OPERATIONS ON RULEBOOKS

As explained in Section 2, a rulebook induces a partial
preorder . on realizations. We are interested in operations
on the rulebooks that preserve existing relations, but may
possibly introduce new comparisons between realizations, i.e.,
the preorder on realizations may be refined.

More formally, our goal is to find conditions on a map
φ : R1 → R2 between two rulebooks that guarantee that
.2 is a refinement of .1. To motivate concepts that will
follow, let us begin with the simplest case of a rulebook
R2 = {u} consisting of a single rule. Let {r1, . . . , rn} = R1

be the rules in the domain, and the map φ therefore collapses
all ri onto u: φ(ri) = u for all i. At the moment we do
not impose any assumptions on ri — some of them may be
comparable, some are equivalent or independent. The question
then becomes when the (total) preorder imposed by u on Ξ is
a refinement of the (partial) preorder given by {r1, . . . , rn}.
Recall that according to the definition of a refinement that
amounts to:

∀x, y ∈ Ξ (x .1 y =⇒ x .2 y) and
(x <1 y =⇒ x <2 y). (6)

A. Aggregative maps

The first observation is that equation (6) necessarily
implies that the value u(x) depends only on the values
r1(x), . . . , rn(x) and not on the realization x itself. Indeed,
if x and y are two realizations such that ri(x) = ri(y) for all
i, yet u(x) 6= u(y) (say, u(x) < u(y) for definiteness), then
y .1 x, but y 6.2 x, contradicting equation (6).

One may view R1 as providing a map from all realizations
to (R+)

n via

x 7→ (r1(x), . . . , rn(x)),

and similarly R2, consisting just of a single rule, can be
identified with a map u : Ξ → R+. The observation above
can then be reinterpreted to say that there exists a map α :
(R+)n → R+ making the following diagram commutative:

Ξ (R+)
n

R+

R1

αR2

∀x ∈ Ξ α(r1(x), . . . , rn(x)) = u(x).

Fig. 11: Factorization of u : Ξ → R+

What can be said about the map α itself? The set (R+)
n

has a natural partial order on it, called the product order,
where given ~a,~b ∈ (R+)

n,

~a = (a1, . . . , an), ~b = (b1, . . . , bn),

one denotes ~a ≤ ~b whenever ai ≤ bi for all i. Note that if
x, y ∈ Ξ are two realizations such that

(r1(x), . . . , rn(x)) ≤ (r1(y), . . . , rn(y)),

then necessarily x .1 y and in view of equation (6) we
therefore need to have u(x) ≤ u(y). If moreover ri(x) <
ri(y) for at least some i, then x <1 y, and so u(x) < u(y)
must be the case. This observation can be summarized as
follows: If S ⊆ (R+)

n, T ⊆ R+ are the sets

S = {(r1(x), . . . , rn(x)) : x ∈ Ξ}, T = {u(x) : x ∈ Ξ},

then α : S → T is an embedding of partial orders. This
brings us to the following

Definition 23 (Aggregative map). We say that it is admissible
to collapse rules r1, . . . , rn to a rule u if, in the notation
above, the map α, that makes Figure 11 commutative, exists,
and α : S → T is an embedding of partial orders.

A map between rulebooks φ : R → R′ is said to be
aggregative if for all u ∈ φ(R′) it is admissible to collapse
rules φ−1(u) onto u.

The following lemma shows that surjective aggregative
maps can be composed yielding another surjective aggregative
map.



Lemma 24. Composition of surjective aggregative maps is
aggregative.

Proof. Let R,R′,R′′ be rulebooks, let φ1 : R → R′, φ2 :
R′ → R′′ be aggregative maps and let ψ : R → R′′ be the
composition of the two, ψ = φ2 ◦ φ1. We need to show that
ψ is aggregative and to this end pick some w ∈ R′′. Let
u1, . . . , un be the rules in φ−12 (w), and for each 1 ≤ i ≤ n let
ri1, . . . , r

i
mi

be the rules enumerating φ−11 (ui) (see Figure 12).

r11, . . . , r
1
m1

r21, . . . , r
2
m2

rn−11 , . . . , rn−1mn−1

rn1 , . . . , r
n
mn

u1
φ−11

u2

un−1

...

un

w
φ−12

Fig. 12: Structure of the preimage ψ−1(w) of w

The first observation is that for any realization x ∈ Ξ,
the value w(x) depends only on the numbers rij(x). Indeed,
since φ1 is aggregative, for each i the value ui(x) depends
only on (rij(x))1≤j≤mi

, and by a similar token w(x) is
uniquely reconstructible from ui(x). More precisely, suppose
αi : (R+)

mi → R+ are the maps witnessing that φ1 is
aggregative, and β : (R+)

n → R+ is the corresponding map
for φ2. If t =

∑n
i=1mi, then the map γ : (R+)

t → R+ given
by

γ(c1, . . . , ct)

= β(α1(c1, . . . , cm1), α2(cm1+1, . . . , cm1+m2), . . . ,

αn(ct−mn+1, . . . , ct)),

satisfies

γ(r11(x), . . . , r1m1
(x), . . . , rn1 (x), . . . , rnmn

(x))

= β(u1(x), . . . , un(x)) = w(x)

for all x ∈ Ξ.
We need to show that γ is an embedding of partial orders,

and to this end let x, y ∈ Ξ be realizations such that rij(x) ≤
rij(y) for all i, j. We need to show that w(x) ≤ w(y). Note
that since αi’s are embeddings,

ui(x) = αi(r
i
1(x), . . . , rimi

(x)) ≤
αi(r

i
1(y), . . . , rimi

(y)) = ui(y).

Also, since β is an embedding, this implies that

w(x) = β(u1(x), . . . , un(x)) ≤
β(u1(y), . . . , un(y)) = w(y),

and hence w(x) ≤ w(y) as claimed.
Finally, if moreover rij(x) < rij(y) for some i, j, then

ui(x) < ui(y), and therefore also w(x) < w(y). Thus γ is

an embedding of partial orders, and therefore ψ is aggregative.

We are now ready to introduce the key notion of an
embedding between rulebooks.

Definition 25 (Rulebook embedding). An embedding be-
tween rulebooks is an aggregative map φ : R → R′ that is
also an embedding between R and R′ as partially preordered
sets.

Lemma 26. Let R1 and R2 be rulebooks, and let φ : R1 →
R2 be a surjective embedding. Let x, y ∈ Ξ be realizations
such that x .1 y. If r ∈ R1 is such that r(y) 6= r(x), then
there exists u′ ∈ R2, such that

u′ ≥ φ(r) and u′(x) < u′(y).

Proof. If r(y) < r(x), then there exists r1 > r such that
r1(x) < r1(y). If r(x) < r(y) to begin with, then we set
r1 = r. In either case we have r1 ≥ r and r1(x) < r1(y).
Set u1 = φ(r1). We are done if u1(x) < u1(y). Otherwise,
let {r11, . . . , r1m1

} = φ−1(u1) be the preimage of u1 (note
that r1 is one of these elements)

Since φ is aggregative and since r1(x) < r1(y), there has
to be some 1 ≤ i ≤ m1 such that r1i (y) < r1i (x). Indeed, if
r1j (x) ≤ r1j (y) for all j, then

(r11(x), . . . , r1m1
(x)) < (r11(y), . . . , r1m1

(y))

in the product order. Hence, φ being aggregative implies
u1(x) < u1(y) contradicting our earlier assumption. Thus
r1i (y) < r1i (x) for some i.

In view of x .1 y, there exist r2 > r1i such that r2(x) <
r2(y). Set u2 = φ(r2). Note that

r1i < r2 =⇒ φ(r1i ) < φ(r2) ⇐⇒ u1 < u2.

We are done if u2(x) < u2(y).
Suppose that u2(x) ≥ u2(y) and let

{r21, . . . , r2m2
} = φ−1(u2).

By the same argument as above, there must exist some 1 ≤
i ≤ m2 such that r2i (x) > r2i (y). In view of x .1 y, there is
r3 > r2i such that r3(x) < r3(y). Set u3 = φ(r3).

uk
...
u3

u2

u1 r11, . . . , r
1
m1φ

r21, . . . , r
2
m2

r31, . . . , r
3
m3

rk1 , . . . , r
k
mk

Fig. 13: Construction of the chain

The process continues, and builds a sequence of rules
u1 < u2 < · · · < uk as in Figure 13. By finiteness of
the rulebook, the chain has to stop at some point, which is



possible only if uk(x) < uk(y). Since uk > u1 ≥ φ(r), the
lemma follows.

Theorem 27. Let R1 and R2 be rulebooks. If there exists
a surjective embedding φ : R1 → R2 between the two, then
.2 refines .1.

Proof. Suppose x, y ∈ Ξ are such that x .1 y, we show
that x .2 y. Pick some u ∈ R2 such that u(y) < u(x). Let
{r1, . . . , rm} = φ−1(u) be the preimage. Note that ri(x) >
ri(y) for some i (for otherwise u(x) ≤ u(y), because φ is
aggregative), hence Lemma 26 applies and produces some
u′ ≥ φ(ri) = u such that u′(x) < u′(y).

It remains to show that x <1 y implies x <2 y. Since
x .2 y has already been shown, it is enough to show that
u(x) 6= u(y) for some u ∈ R2. Pick some r ∈ R1 such
that r(x) < r(y). Lemma 26 produces u ≥ φ(r) such that
u(x) < u(y).

Two examples of surjective embeddings are Priority Re-
finements (Def. 14) and Rule Aggregation (Def. 16).

APPENDIX III
ADDING NEW RULES

There is one important operation that is missing from the
picture — addition of new rules. Surjective embeddings of
rulebooks let us impose new relations between existing rules,
as well as to aggregate several rules into one. What if one
would like to add a new rule that does not bear any direct
relation to existing ones?

Generally, this is a very destructive operation in the sense
that it can dramatically change the preorder imposed on
realizations. Perhaps the most extreme example is when to a
rulebook R1 a new rule r is added that is declared to be of
the highest importance: u < r for all u ∈ R1. Let R2 denote
the resulting rulebook R1 ∪{r}, and note that if x, y are two
realizations such that r(x) < r(y) then necessarily x <2 y
regardless of how they were related in the preorder induced
by R1.

A similar but slightly more general case is when a new
rule is added “in the middle” of R1. More formally, suppose
that R2 = R1 ∪ {r}, where the new rule r satisfies u < r
for some u ∈ R1. If x, y ∈ Ξ are two realizations such that
u′(x) = u′(y) for all u′ ∈ R1 \ {u} and u(x) < u(y), then
x <1 y. If, however, r(y) < r(x), then y <2 x, and the order
between the realizations is reverted.

Unless one makes some additional assumptions on the set
of realizations Ξ, the example above shows that adding a
rule above an existing one can easily change the preorder
on realizations. However, in order to get some meaningful
preservation of the preorder, it is not enough to assume that
the newly added rules are not above any of the existing ones.
Consider the simplest case, when R1 consists of a single rule
{u}, and R2 = {r, u} adds a rule that is incomparable with
r. If x and y are two realizations such that u(x) < u(y),
then necessarily x <1 y. However, if r(y) < r(x), then x
and y are incomparable relative to .2. When the two rules
are further aggregated as described in the previous appendix,
all relations between x and y become possible.

The example above can be modified slightly by considering
a rulebook R1 = {u, u′}, u < u′, and adding the rule r
such that r < u′, but r and u are incomparable. The same
analysis as above now applies to a pair of realizations such
that u′(x) = u′(y). In particular, for the relation . to be
broken by adding a new rule, one does not have to add a
completely independent rule, it is enough to have some rules
in R1 that are not comparable to r.

We are left with only one option — add new rules below
all of the existing ones. However, even this operation does not
result in the refinement of the . order on realizations. Indeed,
the simplest case, is when R1 = {u} andR2 = {u, r}, r < u.
If x, y are two equivalent realizations, then necessarily x .1 y
and y .1 x. However, if the new rule r differentiates between
the realizations, r(x) 6= r(y), then one of x .2 y, y .2 x is
false.

We conclude that in general we cannot guarantee that the
relation . has been refined if any new rules were added. The
last example in the list above is, nonetheless, different from
others. It turns out that the only problem that can occur, when
new rules are added below existing ones, is that equivalent
realizations are no longer equivalent in the enlarged rulebook.
Thus, while the preorder . may not be refined, its strict
counterpart < is preserved by such an operation.

Definition 28. An embedding of rulebooks φ : R1 → R2 is
said to be dominant, if u < r for all u ∈ R2 \ φ(R1) and
r ∈ φ(R1).

Theorem 29. Let φ : R1 → R2 be a dominant embedding
of rulebooks. If x, y are realizations such that x <1 y, then
also x <2 y.

Proof. Consider φ(R1) as a rulebook, and note that the map
φ : R1 → φ(R1) is automatically surjective. Theorem 27
applies, and shows that x < y relative to φ(R1) as well. This
allows us to assume without loss of generality that R1 ⊆ R2,
and the map φ is the identity map. Since φ is assumed to be
dominant, it means that u < r for all r ∈ R1 and u ∈ R2\R1.

Suppose x, y are two realizations such that x <1 y, and
let r ∈ R2 be such that r(y) < r(x). We need to show that
there exists some rule r′ > r such that r′(x) < r′(y). Indeed,
if r ∈ R1, then such a rule r′ must exist simply because
x <1 y by assumption. So, let us assume that r ∈ R2 \ R1.
Since x <1 y there mush be at least one rule u ∈ R1 such
that u(x) < u(y). Since u > r, the theorem follows.

Rule Augmentation as described in Def. 17 is an example
of a dominant embedding.


