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ABSTRACT. We reexamine the Riemann Rearrangement Theorem for different types of convergence and classify
possible sum ranges for statistically convergent series and for series that converge along the 2n-filter.

1. INTRODUCTION

The classical Riemann Rearrangement Theorem (RRT for short) says that the commutative law is no longer
true for infinite sums. To be more precise it says the following:

Theorem 1.0.1 (RRT). Let
∑∞
k=1 xk be a conditionally convergent series of real numbers. Then:

(1) for any s ∈ R one can find a permutation π such that∑∞
k=1 xπ(k) = s;

(2) one can find a permutation σ such that
∑∞
k=1 xσ(k) =∞;

(3) one can find a permutation σ such that
∑∞
k=1 xσ(k) = −∞.

In the RRT one considers the ordinary convergence of series. It looks natural to consider in this setting
some weaker types of convergence. Interesting results in this direction are proved in [BE54] and [LZ58]
where generalizations of the Riemann theorem for Cesaro summation and other matrix summation methods
were obtained. These generalizations are much more complicated than the original Riemann theorem, and
even the statements strongly differ from the classical one: for Cesaro summation it is possible for the set of
sums under all permutations of summands to form an arithmetic progression. V. Kadets posed the problem
of what effects appear if the ordinary convergence in the statement of the Riemann theorem is substituted
by convergence with respect to a filter. In this paper we do two steps in this direction, namely we consider
statistical convergence and convergence of the subsequence

∑2n
k=1 xk of partial sums.

In this paper natural numbers N start from 1.
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in preparation of this text. We would also like to thank Professor Eve Oja and Professor Toivo Leiger from
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2. STATISTICAL CONVERGENCE

2.1. Introduction. Statistical convergence is a generalization of the usual notion of convergence that par-
allels the classical theory. While statistical convergence has become an active area of research under the
name of statistical convergence only recently, it appeared in the literature in a variety of guises since the
beginning of the twentieth century. Statistical convergence is used in the number theory, trigonometric series
and summability theory. A relation between statistical convergence and Banach space theory, as well as the
list of references, can be found in [CGK00]. The aim of this chapter is to generalize RRT to the case of the
statistical convergence.

The object that is going to be investigated is SR st.(
∑
xk) and the sequence of definitions below leads to

it.

Definition 2.1.1. A set A ⊂ N is said to be of density zero if

lim
n→∞

|A ∩ {1, . . . , n}|
n

= 0.

A set A ⊂ N is said to be of density one if its complement N \A is of density zero.
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Definition 2.1.2. A sequence {sn}∞n=1 statistically converges to s (notation: sn
stat.−→ s) if for every ε > 0 the

set {n : |sn − s| > ε} is of density zero.

Definition 2.1.3. Series
∑
xk is said to be convergent statistically to s if the sequence sn =

∑n
1 xk of partial

sums converges statistically to s (short notation is
∑
xk

st.
= s).

Definition 2.1.4. A point s belongs to the statistical Sum Range of the series
∑
xk if there exists a permutation

π such that
∑n
k=1 xπ(k)

stat.−→ s. The set of all such points is called the statistical Sum Range of the series and is
denoted by SR st.(

∑
xk).

We will use also the following definition from [KK97].

Definition 2.1.5. A point x is said to be a limit point for the series
∑
xk if it is the limit point of some

subsequence of the sequence of partial sums of some rearrangement of the series, i.e.,

∃π ∃{nk}∞k=1 :

nk∑
i=1

xπ(i) → x

The set of all such points is called the limit-point range of the series and is denoted by LPR(
∑
xk)

It is easy to see that LPR(
∑
xk) is a closed set and SR st.(

∑
xk) ⊂ LPR(

∑
xk). H. Hadwiger [Had40]

proved that LPR(
∑
xk) is a shifted closed additive subgroup of the space in which the series lives. In particular

this is true for numerical series (see also [KK97], exercises 3.2.2, 2.1.2 and comments to these exercises).
By R we denote the two point compactification of the real line:

R = R ∪ {−∞,∞}.

2.2. Main theorem for SR st.. The aim of this chapter is to prove the following result:

Theorem 2.2.1. Let
∑
xk

st.
= a for the original ordering of xi. Then SR st.(

∑
xk) = LPR(

∑
xk). So SR st.(

∑
xk)

is one of the following:

(1) The only number a;
(2) {a+ λZ} for some λ ∈ R;
(3) The whole of R.

Proof. Since the series
∑
xk converges statistically there exists a subsequence xnk

such that xnk
→ 0. From

the elements of xnk
we can select a subsequence xnki

such that
∑∞
i=1 |xnki

| <∞.
Now we can substitute 0 for all the elements xnki

in the original series and this will not affect the conver-
gence since we are subtracting an absolutely convergent series. So without loss of generality we may assume
that there are infinitely many zeros among the original series terms.

Let us write the definition of LPR in detail:

LPR(
∑

xk) = {x : ∃π ∃{mk} x = lim
k→∞

mk∑
j=1

xπ(j)}

where π is a permutation of N and {mk} is an increasing sequence of indices. Let b be an arbitrary ele-
ment of LPR. Let {mk} be a sequence from the definition corresponding to the element b, and such that
mk+1/mk →∞. We arrange elements of our series in the following way:

xπ(1) + · · ·+ xπ(m1) + 0 + · · ·+ 0︸ ︷︷ ︸
(m2)2 times

+

+xπ(m1+1) + · · ·+ xπ(m2) + 0 + · · ·+ 0︸ ︷︷ ︸
(m3)2 times

+ · · ·

This gives the permutation of the series that statistically converges to b. �
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2.3. Examples. We finish the proof by giving examples which satisfy cases of the theorem 2.2.1.

Example 2.3.1. Any unconditionally convergent series in the classical meaning gives us a series with
SR st. = {a}, which corresponds to the case (1).

Example 2.3.2. Take λ ∈ R. Let the elements of the series be the following:

xn =


0, n 6= 10k and n 6= 10k + 1,

λ, n = 10k,

−λ n = 10k + 1;

k ∈ N, n ∈ N.

Then SR st. = λZ, which corresponds to the case (2).

Example 2.3.3. Any conditionally convergent series in the classical meaning gives us a series with SR st. = R,
which corresponds to the case (3).

Remark 2.3.4. In fact the statement SR st.(
∑
xk) = LPR(

∑
xk) holds for any series in any Banach space.

Thus, one can prove that in any separable Banach space, SR st. can be any shifted closed subgroup.

Remark 2.3.5. If one wants to consider SR st. ⊂ R, then modifying the argument above one can show

Theorem 2.3.6. Let
∑
xk

st.
= a for the original permutation. Then SR st.(

∑
xk) is one of the following:

(1) The only number a;
(2) {a+ λZ} ∪ {−∞,∞} for some λ ∈ R;
(3) The whole of R;
(4) The set {−∞, a,∞}.

3. 2N-CONVERGENCE

3.1. Introduction. Let’s say that a series
∑∞
k=1 xk 2n-converges to c if

lim
n→∞

2n∑
k=1

xk = c.

Definition 3.1.1. A point s ∈ R belongs to the 2n sum range of the series
∑
xk if there is a permutation

π : N→ N such that

lim
n→∞

2n∑
k=1

xπ(k) = s.

The set of all such points is called the 2n sum range of the series
∑
xk and is denoted by SR 2(

∑
xk). When

it is clear which series is considered, we will denote this set just by SR 2.

Let us first consider the following example:

Example 3.1.2. The series
1 + (−1) + 1 + (−1) + · · ·

obviously diverges in the classical sense. But if one takes the subsequence Sn =
∑2n
k=1 xk of its partial sums,

then Sn = 0 for all n and so this subsequence converges. Now permute terms of this series. Note that in order
to converge, after a certain (necessarily even) step elements must go in strict pairs 1 + (−1). For example,
one has

(1) 1 + 1 + 1 + (−1) + 1 + (−1) + · · · = 2, or
(2) (−1) + (−1) + 1 + (−1) + 1 + (−1) + · · · = −2

And it is easy to prove that

{S ∈ R : ∃π lim
n→∞

2n∑
k=1

xπ(k) = S } = 2Z
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So the statement of the Riemann Rearrangement Theorem for the case of 2n-convergence has to be
modified. Surprisingly, this modification and its proof turn out to be rather non-trivial and more complicated
than in the case of statistical convergence.

Recall that the set X ⊂ R is said to be ε-separated if all pairwise distances between the elements of X are
greater than ε. X is said to be separated if it is ε-separated for some ε > 0.

The aim of this chapter is to prove the following result:

Theorem 3.1.3 (Main Theorem). Let limn→∞
∑2n
k=1 xk = a ∈ R. Then SR 2(

∑
xk) is one of the following:

(1) A shifted additive subgroup of the form

a+ {c1z1 + · · ·+ clzl : zk ∈ E, ci ∈ Z,
l∑

k=1

ck is even},

where E is a separated set;
(2) The whole of R;
(3) The real number a.

3.2. Reduction to a special form of the series. Any series
∑
xk can be written as

x1 + (−x1 + α1) + x3 + (−x3 + α2) + x5 + (−x5 + α3) + · · · (1)

by setting

αk
def
= x2k−1 + x2k (∀k ∈ N).

Hence if the series
∑
xk 2n-converges in the original order, i.e. limn→∞

∑2n
k=1 xk = a, then

∑∞
i=1 αi = a.

Theorem 3.2.1. If
∑∞
k=1 αk converges conditionally, then

SR 2(
∑

xk) = R. (2)

Proof. The RRT says that for a conditionally convergent series
∑∞
k=1 αk, for all c ∈ R there exist a permutation

of indices π such that
∑∞
k=1 απ(k) = c. Consider the following arrangement of {xk}:

x2π(1)−1 + (−x2π(1)−1 + απ(1)) + x2π(2)−1 + (−x2π(2)−1 + απ(2)) + · · ·

It’s clear that this series 2n-converges to c. As c was arbitrary, we get (2). �

Definition 3.2.2. A series
∑
k xk is said to be equivalent to

∑
k yk if

∑
k |xk − yk| <∞.

Remark that if one of two equivalent series converge (2n-converge) in some permutation then so does the
second series. Note also that SR 2(

∑
k xk) = SR 2(

∑
k yk) +

∑
k(xk − yk).

Theorem 3.2.1. corresponds to the case (2) of the main theorem. Now consider what happens if
∑∞
k=1 αk

converges unconditionally to a. In this case
∑
k xk is equivalent to the following simplified series:

x1 + (−x1) + x3 + (−x3) + x5 + (−x5) + · · · (3)

So we reduce the series (1) to (3). Changing notation we consider a series of the form:

x1 + x−1 + x2 + x−2 + x3 + x−3 + · · · (4)

where x−n = −xn and xn ≥ 0 for n > 0, xn ≤ 0 for n < 0. Denote by X the set of all elements of the series
and enumerate the elements of X as

X = {ei : i ∈ Z\{0}},

e−n := −en and ei > 0 for i ∈ N. By the order of an element e ∈ X we mean

χ(e) = |{i ∈ Z\{0} : xi = e}|.
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3.3. The (basic) case of separated X.

Lemma 3.3.1. Let X be ε-separated and suppose it contains nonzero elements of infinite order. Then

SR 2 = {c1ej1 + · · ·+ crejr : χ(ejk) = ∞,

ck ∈ Z,
r∑
j=1

cj is even}.
(5)

If there are no nonzero elements of infinite order, then

SR 2 = {0}.

Proof. Denote the right-hand side of (5) by L. Let us prove that SR 2 ⊂ L.
Let π : N→ Z\{0} be an arbitrary bijection such that

A = lim
n→∞

2n∑
j=1

xπ(j) ∈ R.

By the Cauchy criterion there exist an even number n0 such that for every even n and m greater or equal
than n0 the following inequality holds:

|Sn − Sm| < ε.

Take and even number n > n0. Then

|Sn+2 − Sn| = |xπ(n+1) + xπ(n+2)| < ε.

But X is ε-separated and hence |xπ(n+1) + xπ(n+2)| = 0. Thus,

(|xπ(n+1) + xπ(n+2)| = 0)⇔ (xπ(n+1) = −xπ(n+2)).

It follows that the series has the following structure

A = xπ(1) + · · ·+ xπ(n0) + xk1 + (−xk1) + xk2 + (−xk2) + · · · .

So eventually terms come in strict pairs and thus Sn = Sn0
for any even n > n0.

Now in the sum xπ(1) + · · ·+ xπ(n0) consider the elements y1, y2, . . . , yj of finite order. Then we claim for
any i ∈ {1, . . . , j}:

|{k : 1 ≤ k ≤ n0, xπ(k) = yi}| = |{k : 1 ≤ k ≤ n0, xπ(k) = −yi}|.

This is so since in the second part of the series all elements come in strict pairs. And so elements of finite
order cancel each other. The only elements left are thus the elements of infinite order. So A has the requested
form

A = c1ej1 + · · ·+ crejr ,

where ci ∈ Z. Moreover, since n0 was even,
∑l
k=1 ck is even.

We now show that L ⊂ SR 2.
Select an element z ∈ L, z = c1ej1 + · · ·+ crejr and define the series starting with

sign(c1)(ej1 + · · ·+ ej1︸ ︷︷ ︸
|c1| times

) + · · ·+ sign(cr)(ejr + · · ·+ ejr︸ ︷︷ ︸
|cr| times

)

and after these terms the rest of the series is

xk1 + (−xk1) + xk2 + (−xk2) + · · ·

It is obvious that the 2n-sum of this series is z and that the series is a rearrangement of (3). This shows that
L ⊂ SR 2. �



6 Y. DYBSKIY AND K. SLUTSKY

3.4. Some combinatorial lemmas. Let M be a set of indices. For a bounded sequence (xn)n∈M , we define
∆(M) by

∆(M) = ∆
(
M, (xn)n∈M

)
= inf
a∈R

∑
n∈M

|xn − a|. (6)

We also define the sum of an empty set of summands to be 0.

Lemma 3.4.1. If ∆(M) =∞, then one can find a finite collection of disjoint pairs nk,mk ∈M , k = 1, 2, . . . , s
such that

∑s
k=1 |xnk

− xmk
| is arbitrarily large.

Proof. Suppose that {xn}n∈M has only one limiting point (otherwise the statement is obvious). Denote it by
a. The fact that ∆(M) =∞ implies that ∑

n∈M
|xn − a| =∞.

For every K > 0 and every δ > 0 there is s such that
s∑

k=1

|xnk
− a| > K + δ.

We can then select a subsequence {xmk
} disjoint from {xnk

} such that
s∑

k=1

|xmk
− a| < δ.

This can be done since a is the limit point of the sequence. The subsequence obtained now satisfies∑s
k=1 |xnk

− xmk
| > K. Since K was arbitrary, this proves the lemma.

�

Lemma 3.4.2. If ∆(M) <∞, then

(1) Either M is finite, or (xn)n∈M has only one limiting point.
(2) The quantity

∑
n∈M |xn − a| in (6) attains its minimum at the point a(M). If M is infinite, then there

is the only possibility for a(M): it must be the only limiting point of (xn)n∈M . If M is finite then a(M)
can be any median of (xn)n∈M , i.e. a point a with the following property:

|{n ∈M : xn < a}| = |{n ∈M : xn > a}| .

(3) For every ε > 0 one can find a finite collection of disjoint pairs nk,mk ∈M , k = 1, 2, . . . , s such that
s∑

k=1

|xnk
− xmk

| > ∆(M)− ε. (7)

Proof. (1): The statement is obvious.
(2): Assume first that M is infinite. Since ∆(M) < ∞ there is at least one point a such that∑
n∈M |xn − a| < ∞. Then xn − a tends to 0 along M , so a is the only limiting point of (xn)n∈M . The

case of finite M is obvious.
(3): We first deal with a finite M . In this case we can chose xn1

to be the leftmost element with respect to
a(M) and xm1

to be the rightmost. We then define xn2
as the leftmost element of the remaining terms xm2

to be the rightmost, etc. We obtain that
s∑

k=1

|xnk
− xmk

| = ∆(M).

If M is infinite we proceed like in Lemma 3.4.1. �

Let G = {Gk}, k ∈ N, be a pairwise disjoint collection of subsets of R. We say that G is an ε-collection, if
the diameters of all the Gk do not exceed ε. Denote Mk = {n ∈ N : xn ∈ Gk}; ∆G =

∑
k∈N ∆(Mk). Now the

proof of the theorem splits into two cases.
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3.5. Case 1 (reduction to the case of separated X). By the distance between two sets A,B of real numbers
we mean d(A,B) = inf{|a− b| : a ∈ A, b ∈ B}. If one of A,B is empty, we set d(A,B) = +∞.

Lemma 3.5.1. Let {xn} have the following property: there is an ε > 0 such that ∆G <∞ for every ε-collection
G. Then the series

∑
xn is equivalent to a series

∑
yn with a separated set of elements (as in lemma 3.3.1), so

it satisfies the statement of the main theorem.

Proof. Let ε satisfy the condition of the Lemma. We are going to cover the set of values X+ = X ∩ R+ by
an ε-collection G of intervals in such a way that there is an n0 such that for all n,m > n0, all the distances
between Gn and Gm are bigger than ε

4 . If such a G is selected, put Mk = {n ∈ N : xn ∈ Gk} and denote
ak = a(Mk) ∈ Gk, k ∈ N, the number from Lemma 3.4.2. In this case the sequence ak is separated, and
we can define the required symmetric sequence yn, n ∈ Z \ {0}, as follows: yn = ak for n ∈ Mk. The set of
elements of

∑
yn equals {a1,−a1, a2,−a2, . . .}, so it is separated, and the mutual equivalence of

∑
xn and∑

yn follows from the inequality
∑
k |xk − yk| ≤ 2∆G <∞. So all what we need is to construct a G with the

property described above.
Consider covering of X+ by Tk = X+ ∩ [(k − 1)ε, kε) and set tk = inf Tk, tk = supTk if Tk 6= ∅ and

tk = tk = (k − 1/2)ε if Tk = ∅. Since T = (Tk)k∈N forms an ε-collection, we have∑
k

|tk − tk| ≤ 2∆T <∞,

so in particular |tk− tk| → 0. Select the required n0 in such a way that |tk− tk| < ε
4 for all k > n0. For k ≤ n0

put Gk = [(k − 1)ε, kε). Before defining Gk for k > n0 let us explain the picture. We would like to take
Gk = [tk, t

k], but this can be a wrong selection, because for some k both tk and tk+1 can be very close to kε
and tk+1 − tk can be smaller than ε

4 . But for such “bad” values of k the segment [tk, t
k+1] is of the length at

most 3ε
4 , covers both the segments [tk, t

k] and [tk+1, t
k+1], and has at least distance ε

4 from the rest of [tj , t
j ].

So the required selection of Gk for k > n0 can be done as follows: take all those segments [tj , t
j ], j > n0,

which are far from the others (i.e., the distances to the others are bigger than ε
4 ), and add all those segments

[tj , t
j+1], j > n0, where tj+1 − tj < ε

4 . �

3.6. The remaining case.

Lemma 3.6.1. Suppose now that for a sequence {xn} for every ε > 0 there is an ε-collection G such that
∆G =∞. Then one can find a collection of disjoint pairs nk,mk ∈ N, k = 1, 2, . . . such that |xnk

− xmk
| → 0 as

k →∞ and
∞∑
k=1

|xnk
− xmk

| =∞. (8)

In this case SR 2(
∑
xk) = R. This proves the statement of the main theorem.

Proof. For ε = 1 we can find an ε-collection G such that ∆G = ∞. Then applying (3) of Lemma 3.4.2
one can find a collection of disjoint pairs nk,mk ∈ N, k = 1, 2, . . . , n1 such that |xnk

− xmk
| < 1 and∑n1

k=1 |xnk
− xmk

| > 1. For ε = 1/2 we select disjoint pairs nk,mk ∈ N, k = n1 + 1, . . . , n2 such that
|xnk
−xmk

| < 1/2 and
∑n2

k=1 |xnk
−xmk

| > 2. We proceed for ε = 1/4 and so on. To see that SR 2(
∑
xk) = R,

we consider the pairs
(xn1

− xm1
), (xm1

− xn1
), (xn2

− xm2
), (xm2

− xn2
), . . . .

We add missing pairs of the form xi − xi to include all the elements into the series. Permuting pairs (like in
the RRT), we obtain SR 2(

∑
xk) = R. �

3.7. Examples. To complete the paper we are going to demonstrate that for each of the cases (1) – (3) of
the main theorem 3.1.3 there exists a series satisfying it. To write down such examples, let us introduce a
more compact way of writing the series

S
def
= {(yi, ni) : yi ∈ R, ni ∈ N ∪ {∞}},

where ni corresponds to the number of copies of yi we have in the simplified series (ni is the order of the
element yi) and the following condition is satisfied

yi 6= yj (∀i 6= j).
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Say,
SR 2 ((1,∞) , (−1,∞)) = SR 2 (1 + (−1) + 1 + (−1) + 1 + (−1) + · · · )

General example : for any ε-separated set E = {ei}∞i=1 and
S = {(ei,∞)} we have

SR 2(S) = {c1e1 + · · ·+ clel : ek ∈ E, ci ∈ Z,
l∑

k=1

ck is even}.

In particular consider the following two examples.

Example 3.7.1. S1 = {(1,∞) , (−1,∞)}
Here we get that SR 2(S1) = {2Z}. Notice that 2Z is 2-separated.

Example 3.7.2. S2 = {(1,∞) , (−1,∞) , (
√

2,∞) , (−
√

2,∞)}
Applying Lemma (3.3.1) here we get that

SR 2(S2) = {a · 1 + b ·
√

2},
where (a+ b) is even. It’s obvious that SR 2(S2) is dense in R.

Example 3.7.3. Let S3 be any conditionally convergent series (in the usual sense). Then SR 2(S3) = R.

Example 3.7.4. S4 = { (Sn, 1) , (−Sn, 1) : n ∈ N} , where Sn =
∑n
i=1

1
i . For this series also SR 2(S4) = R

holds.

Example 3.7.5. Let S5 be an any series unconditionally convergent to a ∈ R (in the usual sense). This series
gives us SR 2(S5) = {a}.

Remark 3.7.6. If one considers convergence in R, the main theorem has to be modified as follows:

Theorem 3.7.7. Let limn→∞
∑2n
k=1 xk = a ∈ R. Then SR 2(

∑
xk) is one of the following:

(1) A shifted additive subgroup of the form

a+ {c1z1 + · · ·+ clzl : zk ∈ E, ci ∈ Z,
l∑

k=1

ck is even} ∪ {−∞,∞},

where E of is a separated set;
(2) The whole of R;
(3) The real number a;
(4) The set {−∞, a,∞}.
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