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Chapter 1

First contact

1.1 Hi, my name is Cber.

Definition 1.1.1. An equivalence relation on a set X is a set E ⊆ X ×X such that for all x, y, z ∈ X

• (x, x) ∈ E;

• (x, y) ∈ E =⇒ (y, x) ∈ E;

• (x, y) ∈ E and (y, z) ∈ E =⇒ (x, z) ∈ E.

WhenX is a standard Borel space, we say that E is Borel (resp. analytic) if it is a Borel (resp. analytic) subset
of the product space E ⊆ X ×X . Two points x, y ∈ X are E-equivalent if (x, y) ∈ E; we shall denote this
by xEy. An E-equivalence class of x ∈ X is denoted by [x]E and consists of all the points y ∈ X that are
equivalent to x:

[x]E = {y ∈ X : xEy}.

More generally, for a subset A ⊆ X , [A]E denotes the saturation of A:

[A]E = {y ∈ X : xEy for some x ∈ A}.

In this notation [x]E = [{x}]E.
We say that an equivalence relation E is countable if each E-equivalence class is countable; we say E is

finite if so is any E-class. Countable Borel equivalence relations form the object of this notes, so we adopt an
abbreviation cber to denote them.

Here are some examples of equivalence relations.

• Identity relation ∆ ⊆ X ×X , ∆ = {(x, x) : x ∈ X} is the trivial example of an equivalence relation.

• Important class of equivalence relation comes from actions of Polish groups; these are called orbit
equivalence relations. Let G be a Polish group acting in a Borel way on a standard Borel space X .
Points x, y ∈ X are orbit equivalent if they belong to the same orbit of the action:

EGX = {(x, y) ∈ X ×X : Gx = Gy}.

Such an equivalence relation is always analytic. When G is countable, EGX is a cber.

• With any countable group G comes a particularly important action — the Bernoulli shift: Gy 2G by
(gx)(f) = x(g−1f) for all g, f ∈ G. In the case G = Z this action is the left shift on bi-infinite binary
sequences.
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• E0 is a cber on 2N where two sequences are E0-equivalent whenever they agree from some point
on: xE0y if and only if there is n ∈ N such that x(m) = y(m) for all m ≥ n. An important
homeomorphism of the Cantor space, called the odometer, is associated with E0. Odometer is a map
σ : 2N → 2N defined by “adding 1 to the sequence” in the following sense. If x starts with m ones
and then comes a zero, x = 1m0∗, then σ(x) flips the firstm ones to zeroes, the first 0 to 1, and agrees
with x on the rest of indices, σ(x) = 0m1∗. This rule defines σ on all of 2N except for the sequence of
all ones. If x = 1∞, then σ(x) is defined to be the sequence of all zeroes, σ(1∞) = 0∞. Exercise 1.1
encourages you to check that σ is indeed a homeomorphism of the Cantor space.

The odometer, being a homeomorphism of 2N, is a Borel automorphism of the Cantor space, and thus
generates an action of Z, so one may consider the orbit equivalence relation EZ

2N
given by this action. It

turns out that EZ
2N

is “almost” equal to E0; the only difference between EZ
2N

and E0 is that EZ
2N

glues the
E0-class of 0∞ and the E0-class of 1∞ into a single EZ

2N
-class. On the rest of the space they coincide.

Exercise 1.2 offers you to check this statement.

• A slight variation of the previous example leads to the tail equivalence relation Et on 2N, where xEty
whenever x and y have the same “tail” — there exist k1, k2 ∈ N such that x(k1 + n) = y(k2 + n) for
all n ∈ N. There is no canonical group action that realizes Et (though as we shall see soon enough
there is some group action, and in fact an action of Z, that realizes Et as an orbit equivalence relation),
but Et is an orbit equivalence relation of a semigroup action. Let s : 2N → 2N be the left shift:
(sx)(n) = x(n+ 1) for all n ∈ N. The tail equivalence relation can then be described by noting that
xEty holds if and only if sk1(x) = sk2(y) for some k1, k2 ∈ N. Despite superficial similarities in their
definitions, E0 and Et are quite different in some important aspects.

• Turing equivalence relation ≡T on 2N is defined by setting x ≡T y if x and y are Turing reducible to
each other. Informally speaking, x ∈ 2N is Turing reducible to y ∈ 2N is there is a Turing machine (i.e.,
a computer program) that computes x if it is provided with an oracle y. Since there are only countably
many computer programs (each program, after all, is just a finite string in a finite alphabet), Turing
relation ≡T is countable. It is, in fact, a cber on 2N.

• While E0 and Et are cbers, we would like to conclude this list with an example of an uncountable
Borel equivalence relation E1 defined on RN. Its definition copies that of E0 on 2N. Two sequences
of reals x, y ∈ RN are E1-equivalent whenever there is n ∈ N such that x(m) = y(m) for all m ≥ n.
Importance of E1 lies in the fact that it cannot be realized as an orbit equivalence of a Polish group
action (and, moreover, it cannot be even reduced to such a relation). This result is due to A. S. Kechris
and A. Louveau. An interested reader is referred to [Hjo00, Theorem 8.2].

1.2 Feldman–Moore’s Theorem

The goal of this section is to prove Feldman–Moore’s Theorem, which claims that every cber arises as an
orbit equivalence relation of a Borel action of a countable group. We begin by recalling Luzin–Novikov’s
Theorem, the proof of which can be found, for instance, in [Kec95, Theorem 18.10].

Theorem 1.2.1 (Luzin–Novikov). Let P ⊆ X ×Y be a Borel subset of the product of standard Borel spaces.
Suppose every section Px, x ∈ X , is countable. Projection projX P is Borel and, moreover, P can be written
as a union

⋃
n∈N Pn, where each Pn is a graph of a Borel function.

An easy corollary of the above is that every countable-to-one Borel function admits a Borel inverse.
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Corollary 1.2.2. Let f : X → Y be a Borel countable-to-one function between standard Borel spaces. The
image f(X) is Borel in Y , and there exists a Borel function g : f(X) → X such that f ◦ g(y) = y for all
y ∈ f(X).

Proof. Exercise 1.3.

Theorem 1.2.3 (Feldman–Moore [FM77]). Let E ⊆ X ×X be a cber on a standard Borel space X . There
exists a Borel action of a countable group H y X such that E = EHX . Moreover, one can additionally
assume that H is generated by elements {hi : i ∈ N} such that

(i) h2
i = id for all i ∈ N;

(ii) xEy if and only if x = y or hix = y for some i ∈ N.

Proof. Since E ⊆ X×X has countable sections, Luzin–Novikov’s Theorem 1.2.1 applies, and we may write
E =

⋃
n Pn, where each Pn ⊆ X ×X is a graph of a Borel function: if (x, y) ∈ Pn and (x, y′) ∈ Pn, then

y = y′. We use the notation P−1
n to denote the set{

(x, y) ∈ X ×X : (y, x) ∈ Pn
}
.

Since E is symmetric, E =
⋃
n P
−1
n . Let Pm,n = Pm∩P−1

n , and note that E =
⋃
m,n Pm,n. AsX is assumed

to be a standard Borel space, there is no loss in generality to assume that X = [0, 1]. Let I, J ⊆ [0, 1] be
a pair of disjoint closed intervals with rational endpoints; note that I × J ⊆ (X ×X) \∆. For m,n ∈ N
consider the set Z = Z(m,n, I, J) given by

Z = proj1
{

(x, y) ∈ Pm,n : x ∈ I and y ∈ J
}
.

With each such Z we associate a map h = h(m,n, I, J) : Z → X whose graph (see Figure 1.1) is the set
{(x, y) ∈ Pm,n : x ∈ Z}.

I

J

X

X
∆

Pm,n

Z

h(Z)

Figure 1.1: Definition of the function h(I, J,m, n).

Note that

• h(Z) ∩ Z = ∅, because Z ⊆ I and h(Z) ⊆ J ;

• h is injective, because if (x, y) ∈ Z and (x′, y) ∈ Z, then (y, x), (y, x′) ∈ Pn, and so x = x′ since Pn
is a graph of a function;
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•
(
x, h(x)

)
∈ E for all x ∈ Z, since Pm,n ⊆ E and

(
x, h(x)

)
∈ Pm,n.

One may therefore extend h first to a Borel bijection h : Z ∪ h(Z)→ Z ∪ h(Z) by setting h
(
h(x)

)
= x for

all x ∈ Z, and then to an automorphism h : X → X by declaring h(x) = x for all x ∈ X \
(
Z ∪ h(Z)

)
.

The function h = h(m,n, I, J) depends on four parameters. Since I and J are assumed to have rational
endpoints, there are only countably many such automorphisms h, and we may thus enumerate them as
{hi : i ∈ N}. Let H ≤ AutX be the group generated by {hi}i∈N. We claim that H satisfies the conclusion
of the theorem. We need to check that xEy implies x = y or hix = y for some i ∈ N. Let x, y ∈ X be
such that xEy and x 6= y. Since E =

⋃
m,n Pm,n, there is some m,n ∈ N such that (x, y) ∈ Pm,n. The

assumption x 6= y allows us to pick disjoint I, J ⊆ [0, 1] with rational endpoints such that x ∈ I and y ∈ J .
By definition of h = h(m,n, I, J) one has hx = y. We are therefore done, as h(m,n, I, J) = hi for some
i ∈ N.

Corollary 1.2.4. An immediate corollary of Feldman-Moore’s Theorem is that a saturation of a Borel set is
always Borel, since [A]E =

⋃
h∈H hA, where the action H y X realizes E.

� An interesting question is whether any E can be realized as an orbit equivalence relation EH
X for a free action

H y X . A crude obstruction to this is to have equivalence classes of different cardinalities, e.g., if E has a finite
and an infinite class, then E obviously cannot be realized by a free action. But even if every E-class is infinite, it need
not admit a realization as an orbit equivalence of a free action. The following example is due to Scott Adams [Ada88].
For a countable group H let Free(2H) denote the “free part” of the Bernoulli shift:

Free
(
2H
)

=
{
x ∈ 2H : hx 6= x for all h ∈ H

}
.

LetF2 be the free group on two generators and letE be an equivalence relation on the disjoint union Free(2Z)tFree(2F2)
given by xEy if and only if either x, y ∈ Free(2Z) and xEZ

2Z y, or x, y ∈ Free(2F2) and xEF2

2F2
y. Adams [Ada88]

showed that E is not given by a free action of any countable group.

1.3 Smooth equivalence relations

Definition 1.3.1. We say that a Borel equivalence relation E ⊆ X × X is smooth if there exists a Borel
function f : X → Y into some standard Borel space Y such that xEy holds if and only if f(x) = f(y). In
terms of reducibility of Borel equivalence relations, E is smooth if it reduces to the equality relation on Y .

A Borel set A ⊆ X is said to be a Borel transversal for an equivalence relation E if A intersects every
E-class in exactly one point:

∣∣[x]E ∩ A
∣∣ = 1 for all x ∈ X . A Borel function s : X → X is said to be a

Borel selector for E if xEs(x) for all x ∈ X and xEy implies s(x) = s(y) for all x, y ∈ X . In other words,
a selector is a function that assigns to every x ∈ X a distinguished element from its E-class.

Proposition 1.3.2. Let E be a cber on X . The following are equivalent:

(i) E is smooth;

(ii) E admits a Borel transversal;

(iii) E admits a Borel selector.

Proof. (i)⇒ (ii) Let f : X → Y be a reduction of E to the equality on Y . The function f is countable-to-
one, thus by Corollary 1.2.2 it admits a Borel inverse g : f(X)→ X . The set g ◦ f(X) is a Borel transversal
for E.

(ii)⇒ (iii) Let A ⊆ X be a Borel transversal for X . Set s : X → X by defining its graph to be

graph(s) =
{

(x, y) ∈ E : y ∈ A
}
.
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Since graph(s) is Borel, so is the function s itself, which is easily seen to be a selector.

(iii)⇒ (i) A Borel selector s : X → X witnesses smoothness as xEy if and only if s(x) = s(y).

� Equivalence between (ii) and (iii) is valid for all (not necessarily countable) Borel equivalence relation. Indeed,
the implication (ii)⇒ (iii) did not use countability of E, and to see (iii)⇒ (ii) note that {x : s(x) = x} is a Borel

transversal for E whenever s : X → X is a Borel selector. But in general smoothness is a strictly weaker condition
than admitting a Borel selector. Here is an example. Let X ⊆ NN × NN be a Borel set such that proj1X = NN

and yet X does not have a Borel uniformization, i.e., there is no Borel P ⊆ X which is a graph of a function such
that proj1 P = NN; such a set X exists by [Kec95, Exercise 18.17]. We define E on X by declaring xEy whenever
proj1(x) = proj1(y). Obviously, proj1 : X → NN witnesses smoothness of E, but E does not admit a Borel selector,
for that would mean that X has a Borel uniformization.

The simplest example of a smooth cber is provided by the following proposition.

Proposition 1.3.3. If E is a Borel equivalence relation on X with only countably many E-classes, then E is
smooth.

Proof. Pick a representative from each E-class and let T be the set of these representatives. Since T is
countable, it is a Borel transversal for E, hence E is smooth by Proposition 1.3.2 (note that only implication
(i)⇒ (ii) used that E is countable).

Example 1.3.4. Let Z y R be the action generated by the shift x 7→ x+ 1. This actions generates a smooth
equivalence relations, and the unit interval [0, 1) is a Borel transversal for the action.

� A more interesting example of a Borel equivalence relation admitting a Borel selector is as follows. Let G be a
Polish group and let H ≤ G be a closed subgroup. Consider the natural action H y G by multiplication from

the left. EH
G -equivalence classes are precisely the right cosets Hg. The orbit equivalence relation given by this action

is Borel (why?). A theorem of Jacques Dixmier (see [Kec95, Theorem 12.17]) states that EH
G admits a Borel selector.

Definition 1.3.5. Let E be a cber on X . A Borel subset A ⊆ X is smooth if the restriction E ∩A×A of the
equivalence relation E onto A is smooth. We let W to denote the family of all smooth Borel subsets of X;
W is called the wandering ideal.

The following proposition shows that W is indeed a σ-ideal of Borel sets.

Proposition 1.3.6. Let A, B, and An, n ∈ N, be Borel subsets of X .

(i) If A ∈ W and B ⊆ A, then B ∈ W .

(ii) If A ∈ W , then [A]E ∈ W .

(iii) If An ∈ W for all n ∈ N, then
⋃
nAn ∈ W .

Proof. (i) Let f : A → Y be a map such that xEy ⇐⇒ f(x) = f(y) for all x, y ∈ A. The restriction
f |B witnesses smoothness of B.

(ii) Let T ⊆ A be a Borel transversal for E ∩ A × A. The same set T is also a Borel transversal for
E ∩ [A]E × [A]E. Thus [A]E is smooth by Proposition 1.3.2(ii).

(iii) By item (i) it is enough to show that
[⋃

nAn
]
E

is smooth. Since
[⋃

nAn
]
E

=
⋃
n[An]E, and because of

item (ii), we may assume without loss of generality that eachAn isE-invariant. Let Ãn be the “disjointification”
of An: Ã0 = A0 and Ãn = An \

⋃
k<nAk for all n ∈ N. Note that Ãn are also E-invariant, and⊔

n

Ãn =
⋃
n

An.
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Since Ãn ⊆ An, each Ãn ∈ W by item (i). Let fn : Ãn → Yn witness smoothness of E ∩ Ãn × Ãn, where
Yn is a standard Borel space. Let f :

⊔
n Ãn →

⊔
n Yn be defined by f(x) = fn(x) whenever x ∈ Ãn; here⊔

n Yn is endowed with the union Borel structure. Since Ãn are E-invariant and pairwise disjoint, it is evident
that xEy ⇐⇒ f(x) = f(y) for all x, y ∈

⊔
n Ãn =

⋃
nAn.

The wandering ideal will play a role similar to the ideal of null sets in measure theory — once we are
able to prove the desired result modulo a smooth set, it will usually be easy to modify the argument to work
everywhere.

1.4 Decomposition into a finite and aperiodic parts

Definition 1.4.1. A subset A ⊆ X is said to be E-invariant if it is equal to its own saturation: A = [A]E. In
other words, A is E-invariant if x ∈ A and xEy imply y ∈ A.

Proposition 1.4.2. Let E be a cber on X . There is a partition of X into E-invariant Borel pieces

X = X∞ t
∞⊔
n=1

Xn

such that Xn, n ∈ N ∪ {∞}, consists of all the classes of cardinality n: if x ∈ Xn, then
∣∣[x]E

∣∣ = n. Such a
decomposition is unique.

Proof. Uniqueness of the decomposition is evident, we just need to check that sets Xn are necessarily Borel.
By Feldman–Moore’s Theorem 1.2.3 we may pick an actionH y X of a countable group such that E = EHX ;
let H = {hi : i ∈ N}. The set Xn, n ∈ N, is then given by

Xn =
{
x ∈ X : ∃k1, . . . , kn ∈ N such that hkix 6= hkjx for all 1 ≤ i, j ≤ n, i 6= j, and
for any l ∈ N there exists i ≤ n for which hlx = hkix

}
.

Sets Xn, n ∈ N, are therefore Borel, and hence so is X∞ = X \
⋃∞
n=1Xn.

Definition 1.4.3. Recall that a countable equivalence relation E is finite if each E-class is finite, i.e., if
X∞ = ∅ in the decomposition above. We say that E is aperiodic if each E-class is infinite, i.e., X∞ = X .

For most of the questions we are interested in these notes, finite equivalence relations will be trivial for
the following reason.

Proposition 1.4.4. Any finite Borel equivalence relation is smooth.

Proof. Let E be a finite Borel equivalence relation on a standard Borel space X . We may assume that
X = [0, 1]. Pick an action H y X of a countable group such that E = EHX , H = {hi : i ∈ N}. Consider the
set A ⊆ X given by

A = {x ∈ X : x ≤ hnx for all n ∈ N}.

Since each E-class is finite, every E-class has a minimal element, and so A is a Borel transversal for E, hence
E is smooth by Proposition 1.3.2.
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1.5 Full groups

Two important algebraic objects attached to every equivalence relation are its full and partial full groups.

Definition 1.5.1. Let E be a cber on X . A full group of E is denoted by [E] and consists of all Borel automor-
phisms of X that preserve E:

[E] =
{
f : X → X

∣∣ f is a Borel bijection and xEf(x) for all x ∈ X
}
.

A partial full group of E, denoted by [[E]], consists of bijections between Borel subsets ofX which preserve E:

[[E]] =
{
f : A→ B

∣∣ A,B ⊆ X are Borel, f is a bijection, and xEf(x) for all x ∈ A
}
.

For an element f ∈ [[E]], f : A → B, we use dom(f) = A to denote the domain of f , and ran(f) = B
denotes its range.

Definition 1.5.2. Let E be a cber on X . Given two Borel sets A,B ⊆ X , we say that A and B are equide-
composable if there exists f ∈ [[E]] such that dom(f) = A and ran(f) = B. We denote equidecomposability
by A ∼

E
B, or just by A ∼ B.

Exercise 1.4 offers you to check that ∼ is an equivalence relation. The following proposition explains the
choice of the term “equidecomposable”.

Proposition 1.5.3. Suppose that E = EHX is realized as an orbit equivalence of a Borel action of a countable
groupH y X . LetH = {hn : n ∈ N} be an enumeration ofH . Borel setsA,B ⊆ X are equidecomposable
if and only if there are partitions A =

⊔∞
n=0An and B =

⊔∞
n=0Bn into Borel pieces (some of which may

be empty) such that hn(An) = Bn for all n ∈ N.

Proof. One direction is immediate: if A =
⊔
An and B =

⊔
Bn are decomposed as above, we may set

f : A → B to be given by f(x) = hnx whenever x ∈ An; this map witnesses A ∼ B. We now prove the
other direction.

Suppose A ∼ B, let f : A→ B be a function in [[E]] witnessing this. Since xEf(x) for all x ∈ X and
E = EHX , for each x ∈ X there exists some n ∈ N such that f(x) = hnx. Let N : A → N be the function
that chooses minimal such index:

N(x) = min{n ∈ N : f(x) = hnx}.

It is easy to see that N is Borel, and we may set An = N−1(n).

When equivalence relation is smooth, we have a simple necessary and sufficient condition for sets A and
B to be equidecomposable.

Proposition 1.5.4. Let E be a smooth cber on X , and let A,B ⊆ X be Borel sets. A and B are equidecom-
posable if and only if ∣∣[x]E ∩A

∣∣ =
∣∣[x]E ∩B

∣∣ for all x ∈ X. (1.1)

Proof. Necessity of the condition is obvious and is valid regardless of whether E is smooth as any f : A→ B
witnessing equidecomposability gives a bijection between [x]E ∩ A → [x]E ∩ B for all x ∈ X . We prove
sufficiency of this condition.

Let A,B ⊆ X be Borel sets satisfying (1.1). Let T ⊆ X be a Borel transversal for E, pick a realization
E = EHX and an enumeration H = {hn : n ∈ N}. Consider the function N : X → N which assigns to x the
first n ∈ N such that hnx ∈ T :

N(x) = min{n ∈ N : hnx ∈ T}.
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The function N is Borel. Let now MA : A→ N be given by

MA(x) =
∣∣{h−1

k ◦ hN(x)(x) : k ≤ N(x)
}
∩A

∣∣.
Here is a less cryptic explanation of this formula. The function MA enumerates points of A within each
E-class; in other words, MA : [x]E → N is an injection with its image being an initial segment of N; in
particular, when A ∩ [x]E is infinite, MA : [x]E → N is, in fact, a bijection.

The function MB : B → N can be defined in a similar way, and the condition on sets A and B ensures
that MA

(
[x]E ∩A

)
= MB

(
[x]E ∩B

)
for any x ∈ X . We are now ready to define f : A→ B, f ∈ [[E]], by

declaring
f(x) = y whenever xEy and MA(x) = MB(y).

� The converse to Proposition 1.5.4 is also true: If A ∼ B holds for all A,B ⊆ X satisfying (1.1), then E must
necessarily be smooth. This result is due to Achim Ditzen, Alexandr S. Kechris, Sławomir Solecki, and Stevo

Todorcevic [KST99, Theorem 1.1]. The proof is currently beyond our techniques, but we shall soon develop the necessary
tools.

While any cber is generated by an action of a countable group, smooth relations are generated by dynami-
cally very simple actions of Z. We shall later introduce the notion of a hyperfinite relation, and the following
proposition will imply that any smooth countable relation must be hyperfinite.

Proposition 1.5.5. Let E be a cber onX , and suppose that all E-classes have the same cardinality. Let T be
a Borel transversal for E.

(i) If
∣∣[x]E

∣∣ =∞ for all x ∈ X , then there exists f ∈ [E] such that

X =
⊔
n∈Z

fn(T ).

(ii) If
∣∣[x]E

∣∣ = n, n ∈ N, for all x ∈ X , then there exists f ∈ [E] such that fn = id and

X =

n−1⊔
k=0

fk(T ).

Proof. (i) Let E = EHX be given by an action of a countable group, H = {hn : n ∈ N}. Set T0 = T and
f0 : T → T0 to be the identity map. We construct inductively Borel sets Tn and Borel bijections fn : T → Tn,
fn ∈ [[E]] as follows. Suppose Ti, 0 ≤ i ≤ n, have been constructed. Let N : T → N be given by

N(x) = min
{
n ∈ N : hnx 6∈

n⋃
i=0

Ti
}
.

Note that the set, of which minimum is taken, is non-empty as
∣∣[x]E

∣∣ =∞ by assumption. The function N
is Borel, and we set

Tn+1 =
{
hN(x)x : x ∈ T

}
and fn+1(x) = hN(x)x.

It is straightforward to check that Tn+1 is Borel, T ∼ Tn+1 via fn+1, and X =
⊔
n∈N Tn. By reenumerating

Tn and fn with Z being the index set, we may assume that we have a partition

X =
⊔
n∈Z

T̃n and bijections f̃n : T → T̃n, f̃n ∈ [[E]], n ∈ Z,
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such that T̃0 = T and f̃0 = id. One may now define the desired automorphism f : X → X by setting

f(x) = f̃n+1 ◦ f̃−1
n (x) whenever x ∈ T̃n.

(ii) The proof of this item is similar and is requested in Exercise 1.5.

Corollary 1.5.6. If E is a smooth cber on X , then there exists a Borel action Z y X such that E = EZ
X .

Proof. By Proposition 1.4.2 we may decomposeX =
⊔
n∈N∪{∞}Xn into Borel pieces, such that all classes in

E|Xn consist ofn-elements. We may now apply Proposition 1.5.5 to eachE|Xn separately and get fn ∈
[
E|Xn

]
such that for all x, y ∈ Xn one has xEy if and only if fkn(x) = y for some k ∈ Z. Define f : X → X by
setting f(x) = fn(x) whenever x ∈ Xn. Evidently xEy ⇐⇒ fk(x) = y for some k ∈ Z folds for all
x, y ∈ X . Thus E = EZ

X , where the action Z y X is determined by the generator f ∈ [E].

1.6 Invariant measures

Definition 1.6.1. Let E be a cber on X . A measure µ on X is said to be E-invariant if µ(A) = µ(B)
for all equidecomposable A ∼ B. If H is a countable group acting on X , we say that µ is H-invariant if
µ(hA) = µ(A) for all Borel A ⊆ X and all h ∈ H . A measure is ergodic if for any E-invariant Borel subset
A ⊆ X one has either µ(A) = 0 or µ(X \A) = 0.

We say that a measure µ is finite if µ(X) <∞, and µ is a probability measure if µ(X) = 1.

Proposition 1.6.2. Let E be realized as EHX for a Borel action H y X of a countable group, and let µ be a
measure on X . The measure µ is E-invariant if and only if it is H-invariant.

Proof. Suppose first that µ is E-invariant. Pick a Borel setA ⊆ X , and h ∈ H . Since h : A→ hA witnesses
A ∼ hA, we get µ

(
hA
)

= A, and so µ is H-invariant.
Let now µ be H-invariant, and pick Borel sets A,B ⊆ X such that A ∼ B. By Proposition 1.5.3

we may decompose A =
⊔
n∈NAn and B =

⊔
n∈NBn into Borel pieces such hat hnAn = Bn, where

H = {hn : n ∈ N} is an enumeration of H . By H-invariance of µ, µ(An) = µ(Bn) for all n ∈ N, whence
µ(A) = µ(B) by σ-additivity. So µ is E-invariant.

Example 1.6.3. Consider the orbit equivalence relation EZ
2N

given by the odometer map σ : 2N → 2N. Let
µ0 be the measure on {0, 1} given by µ0(0) = µ0(1) = 1/2, and let µ be the Bernoulli measure on 2N, that
is the product of measures µ0 on each copy of {0, 1}. By Proposition 1.6.2, to show that µ is EZ

2N
-invariant

is equivalent to checking that it is invariant under the action of Z, which, of course, is enough to check on
the generator. Indeed, µ is invariant under the odometer, and the details are requested in Exercise 1.6.

Since E0 differs from EZ
2N

only on the set of µ-measure zero (Exercise 1.2), µ is also E0-invariant.

Proposition 1.6.4. Smooth aperiodic cbers don’t have finite invariant measures.

Proof. Suppose towards a contradiction that E ⊆ X × X is smooth and aperiodic, and that µ is a finite
E-invariant measure onX . Pick a Borel transversal T for E and apply Proposition 1.5.5(i) to get f ∈ [E] such
that X =

⊔
n∈Z f

n(T ). We thus have

∞ > µ(X) =
∑
n∈Z

µ
(
fn(T )

)
=
∑
n∈Z

µ(T ) =∞ · µ(T ) =⇒ µ(T ) = 0.

But µ(T ) = 0 implies µ(X) = 0.

In fact, one may immediately strengthen the above proposition as follows.
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Corollary 1.6.5. Let E be a cber onX . IfA ∈ W , then µ(A) = 0 for any finite E-invariant measure µ onX .

Proof. It is enough to show that µ
(
[A]E

)
= 0 for any smooth A ⊆ X . By Proposition 1.3.6, the set [A]E is

smooth. Suppose µ is a finite E-invariant measure on X such that µ
(
[A]E

)
6= 0. The restriction of µ onto

[A]E is then an E|[A]E-invariant finite measure, contradicting Proposition 1.6.4.

Corollary 1.6.6. Since we have shown in Example 1.6.3 that E0 admits a finite invariant measure, we may
conclude that E0 is not smooth.

1.7 Spaces of invariant measures

Theorem 1.7.1. LetH be a countable group. There exists a compact metric spaceU and a continuous action
H y U such that for any Borel action H y X on a standard Borel space there exists a Borel equivariant
injection ξ : X → U .

Proof. Let U be the unit ball of `∞(H) endowed with the weak∗ topology when `∞ is viewed as the dual of
`1(H). By Alaoglu’s Theorem U is a compact Polish space. We letH act on U by permuting the coordinates:
(hx)(g) = x(h−1g) for all h, g ∈ H and x ∈ U . It is easy to see that this action is continuous.

Let now H y X be a Borel action of H on a standard Borel space. Without loss of generality we may
assume that X = [0, 1]. Let ξ : X → U be given by

(
ξ(x)

)
(g) = g−1x ∈ [0, 1]. This map is Borel and for

all g, h ∈ H one has(
hξ(x)

)
(g) =

(
ξ(x)

)
(h−1g) =

(
h−1g

)−1
x = g−1hx =

(
ξ(hx)

)
(g).

Thus ξ is a Borel embedding of H y X into H y U .

Let X be a compact Polish space, and let MEAS(X) denote the set of Borel probability measures on X . It
is a standard fact in functional analysis that MEAS(X) is a convex compact subset in the weak∗ topology of
the dual to the space of continuous functions on X (see Appendix A).

Suppose now that we have a countable group H acting continuously on a compact metrizable X . A
neighborhood of µ ∈ MEAS(X) in the weak∗ topology is parametrized by ε > 0 and a finite family of
functions f1, . . . , fn ∈ C(X), and is given by

U(µ; ε, f1, . . . , fn) =

{
ν ∈ MEAS(X) :

∣∣∣∣∫ fi dµ− ∫ fi dν∣∣∣∣ < ε for all i ≤ n
}
.

Let INV = INV(H y X) ⊆ MEAS(X) denote the set of H-invariant probability measures on X ,

INV =
{
µ ∈ MEAS(X) : µ(hA) = µ(A) for all Borel A ⊆ X and all h ∈ H

}
.

Since the actions is assumed to be continuous, INV is closed in the weak∗ topology. It is easy to check that
INV is a convex subset of MEAS(X).

Finally, let EINV = EINV(H y X) ⊆ INV(H y X) denote the set of ergodic H-invariant probability
measures on X , i.e., µ ∈ EINV if and only if µ ∈ INV and µ(A) ∈ {0, 1} for any Borel H-invariant set
A ⊆ X .

Proposition 1.7.2. Let X be a compact metrizable space, and let H y X be a continuous action of a
countable group. ErgodicH-invariant measures are precisely the extreme points of the set of allH-invariant
measures: ext INV = EINV.
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Proof. Let µ be an ergodic measure on X , and assume towards a contradiction that µ is not an extreme point
in INV. We may therefore represent µ = pµ1 + (1− p)µ2 for some µ1, µ2 ∈ INV and some p ∈ (0, 1). We
may further decompose µ2 = ν1 + ν2, ν1, ν2 ∈ MEAS(X), into an absolutely continuous part ν1 � µ1, and
an orthogonal part ν2 ⊥ µ1. Since such a decomposition is unique, it is easy to see that νi are H-invariant
(but typically not probability measures). One may now decompose X = X1 tX2 into H-invariant Borel
pieces such that νi(Xi) = νi(X). Since

µ(X1) = pµ1(X1) + (1− p)ν1(X1) and µ(X2) = (1− p)ν2(X),

and since µ1(X1) = µ1(X) 6= 0, for µ to be ergodic we need to have ν2 = 0, whence µ = pµ1 + (1− p)ν1,
where ν1 � µ1. By performing the same argument with roles of µ1 and ν1 interchanged we get that µ1 ∼ ν1,
so there is a strictly positive function f ∈ L1(X,µ1) such that for all A ⊆ X

ν1(A) =

∫
A

f dµ1

and the function f is moreoverH-invariant. If f is not essentially constant, there is r ∈ R>0 such that for sets

X≤r =
{
x ∈ X : f(x) ≤ r

}
and X>r =

{
x ∈ X : f(x) > r

}
we have µ1(X≥r) 6= 0 6= µ1(X>r). Note that both X≥r and X<r are H-invariant, which contradicts
ergodicity of µ.

For the other direction, if µ is an extreme point of INV, but not ergodic, then there is a decomposition
X = X1 t X2 into H-invariant pieces such that µ(X1) · µ(X2) 6= 0. Set µi(A) = µ(A ∩ Xi)/µ(Xi),
i = 1, 2, and note that µ = pµ1 + (1− p)µ2, where p = µ(X1), so µ is not an extreme point.

Since the set of extreme points in a compact metrizable convex set is necessarily a Gδ subset, we may
conclude that EINV is a Gδ subset of INV. We may summarize all the above into the following statement.

Theorem 1.7.3. IfH y X is a continuous action of a countable group on a compact metric space, then the
topology on the set INV of H-invariant measures on X generated by neighborhoods of the form

U(µ; ε, f1, . . . , fn) =

{
ν ∈ INV :

∣∣∣∣∫ fi dν − ∫ fi dµ∣∣∣∣ < ε for all i ≤ n
}

is a compact Polish topology. The Borel structure on INV is the smallest σ-algebra which makes measurable
all maps of the form

INV 3 µ 7→ µ(A) ∈ R,

where A is a Borel subset of X . The set EINV of ergodic H-invariant measures is a Gδ subset of INV.

Proof. We need to explain only the statement about the Borel structure on INV. For this see [Kec95, Theorem
17.24].

Definition 1.7.4. For a cber E on X we let INV(E) to denote the set of all E-invariant probability measures
on X , and EINV(E) will denote the set of ergodic E-invariant probability measures.

Corollary 1.7.5. Let E be a cber on a standard Borel spaceX . Endow INV(E) with the σ-algebra generated
by maps INV(E) 3 µ 7→ µ(A), A ⊆ X is Borel. The space INV(E) with this σ-algebra is a standard Borel
space and the set EINV(E) of E-ergodic measures is a Borel subset of INV(E).



12 CHAPTER 1. FIRST CONTACT

Proof. Let E be generated by a Borel action H y X . In view of Proposition 1.6.2 we have INV(E) =
INV(H y X) and EINV(E) = EINV(H y X). By Theorem 1.7.1, there is a universal continuous action
H y U on a compact space U , so the action H y X admits a Borel embedding into H y U . We may
assume for notational simplicity that X ⊆ U . By Theorem 1.7.3, INV(H y U) is the standard Borel space
with the Borel algebra generated by maps µ 7→ µ(A). In particular, the set

Z =
{
µ ∈ INV(H y U) : µ(X) = 1

}
is Borel.

But clearly INV(E) = INV(H y U)∩Z and EINV(E) = EINV(H y U)∩Z, and the corollary follows.

1.8 Vanishing Marker Sequence

Definition 1.8.1. Let E be a cber on X . A set A ⊆ X is said to be a complete section if A intersects each
E-class: [A]E = X . A sequence (Sn)n∈N of subsets of X is a vanishing sequence of markers if each Sn is a
complete section, Sn ⊇ Sn+1 for all n ∈ N, and

⋂
n Sn = ∅.

Lemma 1.8.2. Let E be an aperiodic smooth cber. There exists a vanishing sequence of markers for E.

Proof. Exercise 1.9.

Proposition 1.8.3 (Slaman–Steel [SS88]). Every aperiodic cber admits a vanishing sequence of markers.

Proof. Let E be an aperiodic cber on X , which we may assume to be the Cantor set X = 2N. Pick a Borel
action H y X which realizes E: EHX = E. Consider the map ζ : X → X that assigns to x ∈ X the
minimal element of [x]E in the lexicographical ordering (note that lexicographical ordering coincides with
the ordering inherited from [0, 1], when 2N is realized as the “middle third” Cantor subset of the unit interval;
therefore any closed subset has a minimal element). Somewhat more formally, ζ can be defined as follows.
Let {zn : n ∈ N} be a countable dense set in 2N. The function ζ is defined by

ζ(x) = y ⇐⇒ ∀n hnx ≥ y and ∀n (zn > y =⇒ ∃m hmx < zn).

Clearly ζ is Borel. Note that the set T = {x : ζ(x) = x} intersects every E-class in at most one point, so we
may partition X = X0 tX1, where X0 = [T ]E, X1 = X \X0, and the restriction of E on X0 is smooth.
Lemma 1.8.2 guarantees that we may construct a vanishing sequence of markers (S0

n) for the restriction of
E onto X0. If we construct a marker sequence (S1

n) for E on X1, then (S0
n ∪ S1

n) will be a vanishing marker
sequence for the whole E. So there is no loss in generality to assume that X1 = X , or, in other words, that
ζ(x) 6= x for all x ∈ X , and therefore sets

Sn = {x ∈ X : x(i) = ζ(x)(i) for all i ≤ n}

have empty intersection. They are also nested, and each Sn is evidently a complete section.

Corollary 1.8.4. Let E be an aperiodic cber on X . There exists a partition of X = A t B into two Borel
complete sections.

Proof. Let (Sn)∞n=0 be a vanishing sequence of markers for E. Note that by Exercise 1.8,
∣∣[x]E ∩ Sn

∣∣ =∞
for any x ∈ X and all n ∈ N. Consider the function N : X → N given by

N(x) = min
{
n : [x]E ∩ Sn is a proper subset of [x]E

}
.

We may therefore put A = {x : x ∈ SN(x)} and B = X \A.
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In fact, one can do better than this as it is always possible to partition the phase space of an aperiodic
cber into two equidecomposable parts.

Proposition 1.8.5. For any aperiodic E on X there exists a Borel partition of X = A tB into equidecom-
posable pieces A ∼ B.

Proof. By Feldman–Moore’s Theorem 1.2.3, we may take a group action H y X such that E = EHX and
moreover there are hn ∈ H such that h2

n = id for all n ∈ N and xEy if and only if x = y or hnx = y for
some n ∈ N. Let An ⊆ X be such that hn(An) ∩ An = ∅ and hnx = x for all x ∈ X \

(
An ∪ hnAn

)
.

Define sets Ãn ⊆ An by induction as follows. Set Ã0 = A0 and let

Ãn+1 =
{
x ∈ An+1 : x, hn+1x 6∈

⋃
i≤n

(
Ãn ∪ hnÃn

)}
.

Evidently sets Ãn are pairwise disjoint. Set A =
⊔
n Ãn, and define f : A→ X by putting f(x) = hnx for

x ∈ Ãn.
First we claim that f is injective. Pick distinctx, y ∈ A. Ifx, y ∈ Ãn for somen, then clearly f(x) 6= f(y),

so assume that x ∈ Ãm, y ∈ Ãn and let us suppose for definiteness that m < n. By definition of Ãn,
hny 6∈ hmÃm, hence f(y) = hny 6= hmx = f(x).

Next we note that f(A)∩A = ∅. To see that pick some x, y ∈ A, x ∈ Ãm and y ∈ Ãn for some m 6= n.
If m < n, then hny 6∈ Ãm by the definition of Ãn; if n < m, then x 6∈ hnÃn by the definition of Ãm. In
either case x 6= f(y).

Since f ∈ [[E]], A ∼ f(A). We finally claim that
∣∣[x]E \ (A ∪ f(A))

∣∣ ≤ 1 for all x ∈ X , i.e., we assert
that A ∪ f(A) omits at most one point from each E-class. Suppose towards a contradiction that we have
x, y ∈ X such that xEy and x, y 6∈ A ∪ f(A). By the choice of hn, one has x ∈ An and hnx = y for some
n ∈ N. Clearly x, hnx 6∈

⋃
i<n(Ãi ∪ hiÃi), thus x ∈ Ãn, hence x ∈ A; contradiction.

The set T = X \
(
A ∪ f(A)

)
is therefore a Borel transversal for the restriction of E onto [T ]E. Let

X1 = X \ [T ]E, and set A′ = A ∩ X1, B′ = f(A) ∩ X1. The partition X1 = A′ t B′ satisfies the
conclusion of the proposition for the restriction of E onto X1. Since E|[T ]E is smooth and aperiodic, it is
easy to find A′′ ⊆ [T ]E and B′′ ⊆ [T ]E such that A′′ ∼ B′′ and [T ]E = A′′ t B′′. Finally, the partition
X = (A′ ∪A′′) t (B′ ∪B′′) is as desired.

Exercises

Exercise 1.1. Check that the odometer map σ : 2N → 2N defined in Section 1.1 is a homeomorphism. Show
that σ is minimal, i.e., show that every orbit of σ is dense in 2N.
Exercise 1.2. Let EZ

2N
be an orbit equivalence relation on 2N given by the odometer map σ : 2N → 2N. Show

that
xEZ

2N y ⇐⇒ (xE0y) or
(
xE0 0∞ and yE0 1∞

)
or
(
xE0 1∞ and yE0 0∞

)
.

In plain words, show that EZ
2N

glues two E0-classes, namely those of 0∞ and 1∞, into a single EZ
2N

-class, and
is otherwise identical to E0.
Exercise 1.3. Prove Corollary 1.2.2.
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Exercise 1.4. Check that for any cber E equidecomposability ∼
E

is an equivalence relation.
Exercise 1.5. Prove item (ii) of Proposition 1.5.5.
Exercise 1.6. Show that the Bernoulli measure on 2N is invariant under the odometer map.

x Exercise 1.7. Show that the Bernoulli measure is the unique probability invariant measure for the odometer
on 2N.
Exercise 1.8. Let (Sn)∞n=0 be a vanishing sequence of markers for an aperiodic cber on X . Show that∣∣[x]E ∩ Sn

∣∣ =∞ for all x ∈ X and all n ∈ N.
Exercise 1.9. Using Proposition 1.5.5, show that every aperiodic smooth cber admits a vanishing sequence
of markers.



Intermezzo I

Glimm–Effros dichotomy

We would like now to prove a very important result in the theory of countable Borel equivalence relations. It
turns out that E0 is, in a certain sense, the simplest non-smooth cber.

Definition I.1. Let E and E′ be cbers on standard Borel spaces X andX ′ respectively. We say that E embeds
into E′, and denote this by E v E′, if there exists a Borel injection ζ : X → X ′ such that

xEy ⇐⇒ ζ(x) E′ ζ(y).

When X and X ′ are topological spaces we say that E continuously embeds into E′, denoted by E vc E′,
if the map ζ above can be chosen to be continuous.

The following is a Theorem 3.4.5 in [BK96].

Theorem I.2. Let H y X be a continuous action of a countable group on a Polish space; put E = EHX . If
there is a dense orbit and E ⊆ X ×X is meager, then E0 vc E.

Proof. Since E is meager in X , we may find a countable family of open sets On ⊆ X such that for each
n ∈ N

• On is dense in X ×X;

• On ⊇ On+1;

• O0 = X \∆, where ∆ = {(x, x) : x ∈ X};

• E ⊆ X \
⋂
nOn, i.e., if (x, y) ∈

⋂
On, then ¬(xEy).

Since E is symmetric, we may assume that each On is symmetric as well. We pick a complete metric d on
X and construct a scheme (Us)s∈2<N of open subsets of X and elements hn ∈ H , n ≥ 1, such that for all
s, t ∈ 2<N

1. U sai ⊆ Us for i = 0, 1;

2. diamUs ≤ 2−|s|, for s 6= ∅;

3. Usa0 ∩ Usa1 = ∅;

4. Us × Ut ⊆ On whenever |s| = n = |t| and s(n− 1) 6= t(n− 1);

15
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5. ζs(U0n) = Us, where |s| = n and ζs = ζs1 ◦ · · · ◦ ζsn,

ζsj =

{
id if s(j) = 0,

hj if s(j) = 1.

To clarify item (5), for n = 2 it says that U01 = h2U00, U10 = h1U00, and U11 = h1 ◦h2U00 (see Figure I.1).
The order in which hi’s are applied is important as generally h1 ◦ h2 6= h2 ◦ h1.

∆

U1

U10

U11

U0

U00

U01

h2

h1

Figure I.1: Constructing sets Us, s ∈ 2<N.

First let us finish the proof under the assumption that such a scheme has been constructed. Items (1-2)
ensure that for each x ∈ 2N the intersection

⋂
n Ux|n consists of exactly one point, so we may define a

map ξ : 2N → X by setting ξ(x) to be such that
⋂
n Ux|n = {ξ(x)}. The function ξ is continuous, and

it is injective by (3). We claim that it witnesses E0 vc E. Indeed, if x, y ∈ 2N are not E0-equivalent,
then there are infinitely many n such that x(n) 6= y(n), hence by (4) one has

(
ξ(x), ξ(y)

)
∈ On for all n

such that x(n − 1) 6= y(n − 1), but On ⊇ On+1, so
(
ξ(x), ξ(y)

)
∈
⋂
nOn; thus

(
ξ(x), ξ(y)

)
6∈ E. So

¬(xE0y) =⇒ ¬
(
ξ(x)Eξ(y)

)
.

For the other direction, suppose xE0y and let n0 be such that x(k) = y(k) for all k > n0. By item (5)
for each n we have elements ζx|n ∈ H and ζy|n ∈ H such that Ux|n = ζx|n(U0n) and Uy|n = ζy|n(U0n).
Put αn = ζy|n ◦ (ζx|n)−1. The definition of ζs and the fact that x(n) = y(n) for all n > n0 implies that
αn = αn0 and αn0(Ux|n) = Uy|n for all n ≥ n0. We therefore have{

αn0ξ(x)
}

= αn0

⋂
n

Ux|n =
⋂
n≥n0

αn0Ux|n =
⋂
n≥n0

Uy|n =
{
ξ(y)

}
.

So αn0ξ(x) = ξ(y), which proves that ξ(x)Eξ(y). We have thus shown that xE0y ⇐⇒ ξ(x)Eξ(y), as
claimed.

It remains to construct sets (Us)s∈2N and elements hn ∈ H . For U∅ we may take X \∆. By assumption
there is z ∈ X such that [z]E is dense in X . We may therefore find distinct x0, x1 ∈ [z]E such that (x0, x1) ∈
O1. Let h1 ∈ H be such that h1x0 = x1 and let U0 and U1 be small enough neighborhoods of x0 and x1
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such that h1U0 = U1 and U0 × U1 ⊆ O1. By further shrinking U0 and U1 if necessary we may assume that
U0 ⊆ U∅, U1 ⊆ U∅, and diamUi < 1/2.

At the next step we want to find distinct x00, x01 ∈ U0 ∩ [z]E such that for x10 = h1x00 and x11 = h1x01

one has (xs, xt) ∈ O2, whenever |s| = 2 = |t| and s(1) 6= t(1). If no such x00, x01 exist, then

([z]E ∩ U0)2 ⊆ ∆ ∪ (id× id)(X \O2) ∪ (h−1
1 × id)(X \O2)

∪ (id× h−1
1 )(X \O2) ∪ (h−1

1 × h
−1
1 )(X \O2).

Since the right hand side of this inclusion is closed, we may add closure to the left hand side, which violates
the assumption that X \ O2 is nowhere dense. Once x00, x01 are picked, we may find h2 ∈ H such that
x01 = h2x00, and set x10 = h1x00 and x11 = h1x01 = h1 ◦ h2x00. Since each pair (xs, xt) ∈ O2, when
s(1) 6= t(1), we can find neighborhood U00 ⊆ U0 around x00, such that Us × Ut ⊆ O2, |s| = 2 = |t| and
s(1) 6= t(1), where Us = ζs(Us). By shrinking U00 further if necessary we may assume that items (1), (2),
and (3) are satisfied. This finishes the second step of the construction, which can be continued in a similar
fashion.

Before we prove the main result of this chapter, we need one more definition. LetH y X be a continuous
action of a countable group on a Polish space. A point x ∈ X is said to be recurrent if there are hn, n ∈ N,
such that hnx→ x and hnx 6= x for all n ∈ N. We may now derive following [Nad98, 9.10] what is called
the Glimm–Effros Dichotomy for cbers.

Theorem I.3 (Glimm–Effros Dichotomy). For any cber E exactly one of the following two possibilities holds.

1. E is smooth.

2. E0 v E.

Proof. Let E be realized by a Borel action H y X . Since the periodic part of E is always smooth, we may
assume without loss of generality that E is aperiodic. We may also find a Polish topology on X such that the
action H y X is continuous.

Our first claim is that if there is a recurrent point x ∈ X , then E0 v E. Let x0 ∈ X be recurrent, set
Y = [x0]E, note that Y is an E-invariant Borel set and consider the restriction of E onto Y . The orbit of
x0 is clearly dense in Y . So by Theorem I.2 above, if we can show that E|Y ⊆ Y × Y is meager, then
E0 v E|Y v E, and the claim will be proved. Suppose towards a contradiction that E|Y is not meager in
Y × Y , hence it must be comeager in some non-empty open subset of Y × Y , i.e., there are non-empty open
sets U1, U2 ⊆ Y such that

∀∗(y1, y2) ∈ U1 × U2 (y1, y2) ∈ E|Y .
By Kuratowski–Ulam this is equivalent to

∀∗y1 ∈ U1 ∀∗y2 ∈ U2 (y1, y2) ∈ E|Y .

In particular, there is some y1 ∈ U1 such that ∀∗y2 ∈ U2 one has (y1, y2) ∈ E|Y . By the set {y2 ∈ Y :
(y1, y2) ∈ E|Y } is countable, so we have a countable set that is comeager in U2, whence there must be an
isolated point z ∈ U2. In other words, there is an open subset V ⊆ X such that V ∩ Y = {z}. Since [x0]E
is dense in Y , there is h ∈ H such that hx0 = z, hence x0 = h−1z is also an isolated point in Y . But
an isolated point cannot be recurrent, for if hnx0 → x0 and hnx0 6= x0 for all n, then hnx0 6∈ h−1V , but
x0 ∈ h−1V . This contradiction shows that E|Y is meager in Y × Y and the claim is proved.

So, we may assume that no point in X is recurrent and we shall prove that in this case E is smooth. Pick
a compatible metric d on X and set

Fn =
⋂
h∈H

{
x ∈ X : hx = x or d(hx, x) ≥ 1/n

}
.
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In words the set Fn consists of those points x ∈ X such that each h ∈ H either fixes x or moves it by at
least 1/n. We claim that X =

⋃
n Fn. More precisely, any x ∈ X \

⋃
n Fn would be recurrent, as x 6∈ Fn

allows us to pick hn ∈ H such that hnx 6= x and d(x, hnx) < 1/n, and therefore hnx→ x showing that x
is recurrent.

Let now A ⊆ X be a subset of diameter diamA < 1/n. The set A ∩ Fn intersects any E-class in at
most one point. Indeed, if x, y ∈ A ∩ Fn are E-equivalent, then there is h ∈ H such that hx = y. Since
diamA < 1/n, we have d(x, y) < 1/n, but d(x, hx) ≥ 1/n unless hx = x, so we are forced to conclude
that x = y. Since X is Polish, we may partition each Fn =

⊔∞
k=0A

n
k into Borel sets of diameter at most 1/n.

Thus each Ank is a smooth set, which shows that so is X =
⋃
k,nA

n
k .

� The Glimm–Effros dichotomy is valid, in fact, for all Borel equivalence relations. This deep result is due to Leo
Harrington, Alexander Kechris, and Alain Louveau[HKL90]. The original argument relied on the methods of

effective descriptive set theory. A classical proof has since been found by Benjamin Miller [Mil12].

A measure µ onX is said to be E-quasi-invariant if equidecomposability preserves the null sets: µ(A) =
0 ⇐⇒ µ(B) = 0 for all Borel A,B ⊆ X such that A ∼ B. A measure µ on X is called non-atomic
if it does not have any point masses: µ({x}) = 0 for all x ∈ X . Recall also that µ is E-ergodic if for any
E-invariant subset Y ⊆ X one has either µ(Y ) = 0 or µ(X \ Y ) = 0. For a measure µ on X we let Nµ to
denote the ideal of µ-null sets on X .

Fix a cber E on a standard Borel space X . Let QE denote the set of all quasi-invariant, ergodic, non-
atomic, probability measures onX . We remind that W denotes the ideal of smooth sets onX . The following
characterization of the wandering ideal is due to Saharon Shelah and Benjamin Weiss [SW82].

Theorem I.4. For any cber E the wandering ideal is the intersection of Nµ over all µ ∈ QE: W =
⋂
µ∈QE Nµ.

Proof. We begin by showing the inclusion W ⊆
⋂
µ∈QE Nµ. Pick a smooth set A ⊆ X and a transversal

T ⊆ A for E|A. Let H y X be a countable group action generating E. Similarly to the proof of Proposition
1.6.2, one shows that µ is E-quasi-invariant if and only if µ(A) = 0 ⇐⇒ ∀h ∈ H µ(hA) = 0. Since
A ⊆ [T ]E =

⋃
h∈H hT , it is enough to check that µ(T ) = 0 for all µ ∈ QE. Pick some µ and assume

that µ(T ) 6= 0. Since µ is non-atomic, the restriction of µ onto T is isomorphic to the (re-normalized)
Lebesgue measure on [0, 1]. We may therefore partition T = T1 tT2 into two Borel sets of positive measure:
µ(T1) · µ(T2) > 0. Since T was a transversal, [T1]E and [T2]E are two disjoint Borel E-invariant sets of
positive measure. Therefore µ is not ergodic, implying that µ(T ) = 0 for all µ ∈ QE as claimed.

For the reverse inclusion we are going to show that for any non-smooth A ⊆ X there exists µ ∈ QE such
that µ(A) > 0. By Glimm–Effros dichotomy Theorem I.3, we may find a Borel embedding ξ : 2N → A such
that xE0y ⇐⇒ ξ(x)Eξ(y). LetB = ξ

(
2N
)
; note thatB is Borel, as ξ is one-to-one, and E|B is isomorphic

to E0. Let as before H y X generate E, and fix an enumeration H = {hn : n ∈ N}; it is convenient to
assume that h0 = id. Define the measure µ on X by setting

µ(C) =

∞∑
n=0

2−n−1ν(hnC ∩B),

where ν is the measure on B obtained by pushing forward via ξ the Bernoulli measure on 2N. We claim that
µ ∈ QE and µ(A) > 0. The measure µ is a probability measure, since ν(hnX ∩B) = ν(B) = 1 for all n, so
µ(X) =

∑∞
n=0 2−n−1 = 1. Also µ(A) ≥ ν(h0A ∩B)/2 = ν(B)/2 = 1/2 > 0, and it clearly non-atomic

as the Bernoulli measure is non-atomic. To show ergodicity, note that for any E-invariant Z ⊆ X either
ν(Z ∩B) = 0 or ν

(
(X \Z)∩B

)
= ν(B \Z) = 0, because ν is E|B-invariant. Since for any E-invariant Z

we have hnZ = Z for all n ∈ N and thus

µ(Z) =
∞∑
n=0

2−n−1ν(hnZ ∩B) = ν(Z ∩B),
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the measure µ is seen to be ergodic.
It remains to check that µ is E-quasi-invariant. To this end we show µ(C) = 0 implies µ([C]E) = 0.

This implies quasi-invariance, as C ∼ D forces [C]E = [D]E. By definition of µ, µ(C) = 0 yields
ν(hnCn ∩B) = 0 for all n ∈ N. Using E-invariance of [C]E, we therefore have

0 = µ(C) =

∞∑
n=0

ν(hnC ∩B) ≥ ν
(⋃
n

hnC ∩B
)

= ν
(
[C]E ∩B

)
=

= ν
(
[C]E ∩B

) ∞∑
n=0

2−n−1 =
∞∑
n=0

2−n−1ν(hn[C]E ∩B) = µ([C]E).

Thus µ([C]E) = 0, and µ is quasi-invariant.





Chapter 2

Compressible equivalence relations

2.1 When do we have an invariant measure?

We have seen in Proposition 1.6.4 that smoothness is an obstruction for an aperiodic cber to have a finite
invariant measure. A natural question is whether this is the only obstruction. Recall that a tail equivalence
relation Et on 2N was defined by declaring xEty whenever there exist k1, k2 ∈ N such that x(k1 + n) =
y(k2 + n) for all n ∈ N.

Proposition 2.1.1. The tail equivalence relation Et is not smooth, yet it does not admit a finite invariant
measure.

Proof. Suppose Et is smooth. By Proposition 1.3.2 there is a Borel selector s : 2N → 2N. Since s is a
Borel function, there must be a dense Gδ subset Z ⊆ X such that s|Z : Z → X is continuous (see [Kec95,
Theorem 8.38]). By considering

⋂
n∈Z σ

n(Z) instead of Z, we may assume without loss of generality that Z
is invariant under the odometer map. Since Z must be uncountable, we may pick x, y ∈ Z such that ¬(xEty).
Let xn ∈ 2N be defined by changing the first n digits of x to the corresponding digits of y:

xn(i) =

{
y(i) if i < n,

x(i) if i ≥ n.

Note that for each n there is mn ∈ Z such that σmn(x) = xn. Since Z is assumed to be σ invariant, xn ∈ Z
for all n ∈ N. Since obviously xn → y, continuity of s guarantees that s(xn) → s(y), but xnEtx for all
n ∈ N, hence s(xn) = s(x). So s(x) → s(y), i.e., s(x) = s(y), implying that xEty, contradicting the
choice of x, y ∈ Z. Thus Et is not smooth.

Now to the existence of an invariant measure. Suppose towards a contradiction that there is a finite
Et-invariant measure µ on 2N. Let A ⊂ 2N be the family of all sequences that start with zero:

A = {x ∈ 2N : x(0) = 0}.

Let f : X → A be the right shift map which adds a leading zero:

(
fx
)
(n) =

{
0 if n = 0,

x(n− 1) otherwise.

Note that f : X → A is a bijection which preserves Et, and so X ∼
Et

A. Thus it must be the case that
µ(A) = µ(X), butX \A is a complete section for Et. So we have µ(X \A) = 0 and [X \A]Et = X , which
forces us to conclude that µ(X) = 0.

21
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To summarize, being smooth is not the only obstruction for having a finite invariant measure. Scrutinizing
the argument in Proposition 2.1.1, one comes up with the following phenomenon, which prevents Et from
having an invariant measure.

Definition 2.1.2. A cber E on X is said to be a compressible equivalence relation if there exists a set A ⊆ X
such that X ∼ A and X \ A is a complete section. In a more verbose fashion, E is compressible if X is
equidecomposable with a proper subset which omits at least one point from each E-class.

The proof of Proposition 2.1.1 shows that Et is compressible, and also that no compressible cber admits
a finite invariant measure. It turns out that compressibility is the precise obstruction for having an invariant
measure. This is the content of Nadkarni’s Theorem, which we shall prove at the end of this chapter.
Remark 2.1.3. Let us note that if E has a finite equivalence class, then E cannot be compressible, because if
X ∼ A, then ∣∣[x]E

∣∣ =
∣∣[x]E ∩A

∣∣ for all x ∈ X.

So if
∣∣[x]E

∣∣ <∞, then [x]E = [x]E ∩A, implying that [X \A]E 6= X .

2.2 Properties of compressible relations

Compressibility can be reformulated in a number of equivalent ways, some of which look significantly stronger.

Proposition 2.2.1. Let E be a cber on X . The following are equivalent

(i) E is compressible.

(ii) There exist pairwise disjoint Borel sets Bn ⊆ X , n ∈ N, such that each Bn is a complete section and
Bn ∼ Bm for all m,n ∈ N.

(iii) There are pairwise disjoint Borel sets An ⊆ X , n ∈ N, such that X ∼ An for all n ∈ N.

Proof. (i) ⇒ (ii) Let A ⊆ X be such that X ∼ A and B := X \ A is an E-complete section; let also
f : X → A be an element of [[E]] witnessing X ∼ A. Set Bn = fn(B), and note that B0 ∼ Bn via fn and
each Bn is an E-complete section.

(ii)⇒ (iii) Let H y X be an action that realizes E, enumerate H = {hn : n ∈ N}, and consider a Borel
function N : X → N

N(x) = min{n ∈ N : hnx ∈ B0}.

Pick a countable family of injective maps τn : N→ N with disjoint images τn(N) ∩ τm(N) = ∅ for m 6= n,
and let fn : B0 → Bn witness B0 ∼ Bn. Functions gn : X → X are defined by

gn(x) = f
τn
(
N(x)

) ◦ hN(x)x,

and are easily checked to be injective, thus X ∼ gn(X) for all n ∈ N. Since gn(X) ⊆
⋃
i∈NBτn(i), we get

gn(X) ∩ gm(X) = ∅, m 6= n, by the choice of functions τn.

(iii) ⇒ (i) This implication is obvious, as X ∼ A0, and A1 ⊆ X \ A0, so X \ A0 is an E-complete
section.

Definition 2.2.2. Let E be a cber on X and A,B ⊆ X be Borel sets. We use the notation A � B to denote
existence of a Borel subset B′ ⊆ B such that A ∼ B′. When B′ ⊆ B can be found such that A ∼ B′ and
moreover [B \B′]E = [B]E, then a strict notation A ≺ B is used.
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A standard Schröder–Bernstein argument is available for the relation �.

Proposition 2.2.3. If A � B and B � A, then A ∼ B.

Proof. The most standard proof of Schröder–Bernstein Theorem works.

Definition 2.2.4. We have defined the notion of a compressible equivalence relation, and it is convenient now
to define what it means for a set to be compressible. Let E be a cber on X and let A ⊆ X be a Borel set. We
say that A is compressible if there exists a subset B ⊆ A such that A ∼ B and [A \ B]E = [A]E. In other
words, A is compressible if the restriction of E onto A×A is a compressible equivalence relation.

Note that a subset of a compressible set may not be compressible. Indeed, if A ∩ [x]E is finite for some
x ∈ X , then A cannot be compressible; in particular, no compressible set is finite. But any E-invariant
subset of a compressible set is compressible (see Exercise 2.1). We let H (or HE if we want to emphasize
dependence on E) to denote the family of all Borel subsets of X whose saturation is a compressible set:

H =
{
A ⊆ X : A is Borel and[A]E is compressible

}
We call H the Hopf ideal of E (Exercise 2.2 suggests checking that H is indeed a σ-ideal of Borel sets).

Remark 2.2.5. Note that relations � and ≺ are transitive. In fact, if A ≺ B and B � C, then A ≺ C. In
particular, if A ≺ B and B � A, then A ≺ A, which is just another way of saying that A is compressible.

Proposition 2.2.6. Let E be a cber on X and let A ⊆ X be Borel. If A is compressible, then A ∼ [A]E. In
particular, [A]E is also compressible.

Proof. Since the identity map shows A � [A]E and since we have the Schröder–Bernstein argument (see
Proposition 2.2.3), it is enough to show that [A]E � A. We may apply Proposition 2.2.1(iii) to get pairwise
disjoint Borel subsets An ⊆ A, n ∈ N, and bijections fn : A→ An, fn ∈ [[E]]. Let H = {hn : n ∈ N} be a
countable group acting on X and realizing E. Set N : [A]E → A to be given by

N(x) = min{n ∈ N : hnx ∈ A},

and set g : [A]E → A to be g(x) = fN(x) ◦ hN(x)x. This map shows that [A]E � A, and so [A]E ∼ A.

2.3 Nadkarni’s Theorem

As we have already anticipated, compressibility is the only obstruction for a cber to admit a finite invariant
measure. This result for cbers that are realized by an action of Z is due to Mahendra Nadkarni [Nad90],
and Howard Becker and Alexander Kechris [BK96, Section 4] supplied the necessary modifications to make
the argument work for a general cber. The proof of the theorem also benefits from ideas of Eberhard Hopf
[Hop32]. The rest of this chapter follows closely the presentation in [Nad90] and [BK96].

Theorem 2.3.1 (Nadkarni). A cber does not have any finite invariant measures if and only if it is compressible.

The proof of the theorem will take us a while, and will gradually emerge by the end of this chapter. We
would like to start with a discussion of the following question: How one may start constructing an invariant
measure? Let us say we have got a cber E on X and a set A ⊆ X . How should we decide what the measure
of A should be?

The key observation is that E-equidecomposable sets must necessarily have the same measure. Here is
how it can be used. Let F ⊆ X be a “sampling set” — we shall try to measure sets in the “units of F ”. Let
us say we have an E-invariant measure on X , call it µ. If one can partition A into pieces A1 t · · · tAn tR
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where each Ai ∼ F is equidecomposable with F , then measure of A will be at least n times the measure of
F . If moreover in this decomposition R � F , then we also have an upper estimate µ(A) ≤ (n + 1)µ(F ).
Suppose we have a similar estimate for the whole phase space X with respect to the same sampling set F :

mµ(F ) ≤ µ(X) ≤ (m+ 1)µ(F ).

Combining these two estimates one gets that

n

m+ 1
≤ µ(A)

µ(X)
≤ n+ 1

m
. (2.1)

The normalization of measure is, of course, immaterial, so we may as well assume µ(X) = 1, which yields
an estimate on the measure ofA. Asm and n grow, that is as we take “smaller” sampling sets F , this estimate
improves its precision, and bounds converge to µ(A).

We have argued so far under the assumption that we have an invariant measure µ, but the estimate we
arrived at depends on purely descriptive parameters — the number of times a sampling set F fits into A. So
here is a roadmap for constructing an invariant measure. Pick a “vanishing” sequence (Fi)

∞
i=0 for E and show

that for any Borel set A bounds in equation 2.1 when computed with respect to Fi converge as i→∞.
As usually, the reality is more rugged than the roadmap, and we shall have to introduce some technical

complications into our plan to make it work, but the above discussion hopefully demystifies the origin of an
invariant measure. We begin by developing tools to compare possible measures of two given Borel sets.

Lemma 2.3.2. Let E be a cber on X and let A,B ⊆ X be Borel sets; let Z = [A]E ∩ [B]E. There is a
partition of Z = P tQ into E-invariant pieces such that

A ∩ P ≺ B ∩ P and B ∩Q � A ∩Q.

Moreover, P and Q are unique modulo the Hopf ideal H in the sense that if Z = P ′ t Q′ is another such
partition, then P M P ′ and Q M Q′ belong to H .

P

Q

Z
B

A

Figure 2.1: Decomposing Z = [A]E ∩ [B]E into P and Q.

Proof. Let H y X , H = {hn : n ∈ N}, be an action of a countable group realizing E. Set inductively

An =
{
x ∈ A \

⋃
i<n

Ai : hnx ∈ B \
⋃
i<n

Bi

}
Bn = hn(An).

Note that sets An are pairwise disjoint, and so are sets Bn. Note also that An 3 x 7→ hnx ∈ Bn is a
bijection witnessing An ∼ Bn. Therefore Ã ∼ B̃, where Ã =

⊔
nAn and B̃ =

⊔
nBn. One may now set

P = Z ∩ [B \ B̃]E and Q = Z \ P .
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To show uniqueness of such a decomposition, suppose Z = P ′ tQ′ is another such partition. To show
that P M P ′ and Q M Q′ are in H , it is enough to show that P ′ ∩ Q and Q′ ∩ P are compressible. Set
S = P ′ ∩Q. Since A ∩ P ′ ≺ B ∩ P ′, and since S is an E-invariant subset of P ′, we have A ∩ S ≺ B ∩ S.
Similarly, B ∩ Q � A ∩ Q implies B ∩ S � A ∩ S, thus A ∩ S ≺ A ∩ S, so A ∩ S is compressible (by
Exercise 2.4), hence so is S = [A ∩ S]E via Proposition 2.2.6. The argument for Q′ ∩ P is similar.

Given Borel sets A,B ⊆ X and n ∈ N, we shall use the following notation.

• A � nB means that one can represent A as
⋃n
i=1Ai in such a way that Ai � B for each 1 ≤ i ≤ n.

Note that A � 1B is equivalent to A � B.

• A ≺ nB means that moreover in the representation A =
⋃n
i=1Ai as above we can have Ai ≺ B for

at least one i ≤ n. It is worth making a few comments about this notion. First of all, this definition is
equivalent to a seemingly weaker one. Suppose the set A admits a representation A =

⋃n
i=1Ai such

that fi : Ai → B witness Ai � B and
⋃
i=1

[
B \ fi(Ai)

]
E

= [B]E. We claim that in this case we
necessarily have A ≺ nB. Indeed, set X1 =

[
B \ f1(A1)

]
E

and define for k < n

Xk+1 =
[
B \ fk+1(Ak+1)

]
E
\
⋃
i≤k

Xk.

Evidently each Xk is E-invariant and by assumption [B]E =
⊔n
k=1Xk. Now set

A′1 =
n⊔
i=1

(Ai ∩Xi)

A′k =
(
Ak ∩ (X \Xk)

)
t (A1 ∩Xk), for k > 1.

The maps f ′k : A′k → B defined by

f ′1(x) = fk(x) whenever x ∈ Ak ∩Xi

f ′k(x) =

{
fk(x) if x 6∈ Xk

f1(x) otherwise
for k > 1

witness A′k � B and A′1 ≺ B.
We note that A ≺ 1B is the same as A ≺ B defined earlier.

• A � nB denotes existence of pairwise disjoint subsets Bi ⊆ A, 1 ≤ i ≤ n, such that Bi ∼ B. We
may say in this case that A contains at least n copies of B.

• A � ∞B will similarly denote existence of an infinite pairwise disjoint family Bi ⊆ A, i ∈ N, such
that Bi ∼ B for all i ∈ N. Note that A � ∞B implies A is compressible by Proposition 2.2.1(ii).

• Finally, A ≈ nB will signify the possibility to decompose A =
⊔n
i=1Bi t R into Borel pieces such

thatBi ∼ B andR ≺ B. In particular,A ≈ 0B is another way of denotingA ≺ B. Note thatA ≈ nB
implies that A � nB and A ≺ (n+ 1)B.

Proposition 2.3.3. If A � nB and C � mB for some m ≤ n, m,n ∈ N, then C � A. If moreover
C ≺ mB, then C ≺ A. In particular,

a) if A ≈ nB and C ≈ mB for some m < n, then C ≺ A;

b) if A ≈ nB and A ≈ mB for some m 6= n, then A is compressible
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Proof. Suppose we have pairwise disjoint sets Bi ⊆ A, 1 ≤ i ≤ n, together with maps fi : Bi → B
witnessing Bi ∼ B, and suppose also that C is written as

⋃m
j=1Cj , where each Cj � B. By considering

C ′j = Cj \
⋃
k<j Ck instead of Cj , we may assume that Cj are pairwise disjoint; thus C =

⊔m
j=1Cj . For the

moreover part we as lo assume that Cm ≺ B. Pick maps gj : Cj → B, which show that Cj � B.
Consider a function ξ : C → A defined by the formula

ξ(x) = f−1
j ◦ gj(x) if x ∈ Cj .

It is easy to check that ξ : C → A is an injection and ξ ∈ [[E]]. For the moreover part we have
[
B\gm(Cm)

]
E

=
[B]E and since [C]E ⊆ [B]E ⊆ [A]E, one may conclude that[

A \ ξ(A)
]
E
⊇
(
[A]E \ [B]E

)
∪
[
Bm \ f−1

m ◦ gm(Cm)
]
E

=
(
[A]E \ [B]E

)
∪
[
B \ gm(Cm)

]
E

=
(
[A]E \ [B]E

)
∪ [B]E = [A]E.

Thus C ≺ A as claimed.

Proposition 2.3.4. Let E be a cber onX , let A,B ⊆ X be Borel sets, and let Z = [A]E ∩ [B]E. There exists
a partition Z = Q∞ t

⊔∞
n=0Qn of Z into E-invariant Borel pieces such that A ∩Qn ≈ n(B ∩Qn) for all

n ∈ N, and A ∩Q∞ � ∞(B ∩Q∞).
Moreover, such a decomposition is unique up to a compressible perturbation, i.e., if

Z = Q′∞ t
∞⊔
n=0

Q′n is another such partition,

then Qn M Q′n ∈H for all n ∈ N ∪ {∞}.

Q0

Q1

Q2

Q3

Q4

B0

B1
1B1

B1
2 B2

2B2

B1
3 B2

3 B3
3B3

B1
4 B2

4 B3
4 B4

4B4

R0

R1

R2

R3

R4

Q∞B∞ B1
∞ B2

∞ B3
∞ B4

∞

Z

Figure 2.2: Partition of Z = [A]E ∩ [B]E into sets Qn. The set B is in darker gray to the left, and A is in
light gray to the right.



2.4. THE FRACTION FUNCTION 27

Proof. Let us first provide a little more details to the statement and explain the illustration in Figure 2.2. If
we set Bn = B ∩Qn, then the proposition asserts that A ∩Qn ≈ nBn, i.e., A ∩Qn can be partitioned into
Borel pieces

A ∩Qn = B1
n tB2

n t · · · tBn
n tRn

such that Bn ∼ Bi
n for all i ≤ n, and Rn ≺ Bn.

The decomposition depicted in Figure 2.2 is constructed by induction. For the base we apply Lemma
2.3.2 to A and B and get a partition Z = P̃0 t Q̃0 into invariant Borel pieces such that A ∩ P̃0 ≺ B ∩ P̃0

and B ∩ Q̃0 � A ∩ Q̃0. We set Q0 = P̃0, B0 = B ∩Q0, and R0 = A ∩Q0. Since B ∩ Q̃0 � A ∩ Q̃0, we
may find a Borel subset B̃1 ⊆ A ∩ Q̃0 such that B ∩ Q̃0 ∼ B̃1.

To build the next layer of decomposition we apply Lemma 2.3.2 to sets B ∩ Q̃0 and A1 = (A∩ Q̃0) \ B̃1

yielding a partition of
[
B ∩ Q̃0

]
E
∩ [A1]E = [A1]E into invariant sets P̃1 ∪ Q̃1 such that

A1 ∩ P̃1 ≺ B ∩ Q̃0 ∩ P̃1 = B ∩ P̃1 and B ∩ Q̃0 ∩ Q̃1 = B ∩ Q̃1 � A1 ∩ Q̃1.

We set Q1 = Q̃0 \ Q̃1, B1 = B ∩Q1, B1
1 = B̃1 ∩Q1, and R1 = (A∩Q1) \B1

1 . Since B ∩ Q̃1 � A1 ∩ Q̃1,
we may find B̃2 ⊆ A1 ∩ Q̃1 such that B ∩ Q̃1 ∼ B̃2. Note that B̃2 is necessarily disjoint from B̃1.

The process continues by applying Lemma 2.3.2 to sets B ∩ Q̃1 and A2 = (A ∩ Q̃1) \ B̃2. As a result,
we construct sets Qn, Bn, Bi

n, 1 ≤ i ≤ n, and Rn for all n ∈ N, which satisfy all the conclusions of the
lemma. The sets Qn, n ∈ N, may not cover all of Z, so we set Q∞ = Z \

⊔
nQn and show that Q∞ ∈H .

During the run of the construction above, we also construct disjoint Borel sets B̃n+1 ⊆ A such that
B ∩ Q̃n ∼ B̃n+1 ∩ Q̃n for all n. SinceQ∞ is a subset of Q̃n for all n, we may setBn+1

∞ = B̃n+1 ∩Q∞, and
get infinitely many disjoint Borel subsets of Q∞ such that B ∩ Q∞ ∼ Bn

∞ for every n ≥ 1. In particular,
Bn
∞ ∼ Bm

∞ for all m,n ≥ 1, and by Proposition 2.2.1(ii) Q∞ is a compressible set, since [B ∩Q∞]E = Q∞.
It remains to check uniqueness of such a decomposition. Suppose Z = Q′∞t

⊔
Q′n is a different partition

of Z with the same list of properties. Since Q′∞ and Q∞ are compressible, to show Qn M Q′n ∈H for all
n ∈ N ∪ {∞}, it is enough to check that Qn ∩Q′m ∈H for all m 6= n in N. Let S = Qn ∩Q′m. We have
A ∩Qn ≈ n(B ∩Qn) and also A ∩Q′m ≈ m(B ∩Q′m). Since S is an invariant subset of both Qn and Q′m,
we also have A ∩ S ≈ n(B ∩ S) and A ∩ S ≈ m(B ∩ S). Thus Proposition 2.3.3 applies and shows that
A ∩ S is compressible. By Proposition 2.2.6, the set [A ∩ S ]E = S is also compressible, and the uniqueness
follows.

2.4 The fraction function

This section as well as Sections 2.6 and 2.8 closely follow the material from [Nad90] together with remarks
suggested in [BK96].

For any pair of Borel sets A,B ⊆ X we fix a decomposition of Z = [A]E ∩ [B]E into sets Q∞ t
⊔
nQn

as in Proposition 2.3.4 and associate with it a fraction function [A/B] : X → N defined by

[
A

B

]
(x) =


n if x ∈ Qn for some n ∈ N,

∞ if x ∈ Q∞,
0 otherwise.

The function [A/B] does depend on the choice of the partition of Z, but in a very mild way: if [A/B]′ is
defined with respect to another way of decomposing Z = Q′∞ t

⊔
nQ
′
n, then{

x ∈ X : [A/B](x) 6= [A/B]′(x)
}

is in the Hopf’s ideal.

Given functions ξ, ζ : X → R, we shall use notations like ζ = ξ mod H , ζ ≤ ξ mod H , etc. to denote that
the set of x ∈ X such that ζ(x) 6= ξ(x), ζ(x) 6≤ ξ(x), etc. belongs to H . Since set Q∞ in the definition of
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the fraction function is compressible, if we are interested in the behavior of [A/B] only mod H , then we
may safely disregard points x in Q∞. Here is a rather long list of properties of the fraction function, most of
which are very natural to expect based on its definition.

Proposition 2.4.1. The fraction functions possess the following properties for all Borel setsA,B,C,D ⊆ X .

(i) If xEy, then [A/B](x) = [A/B](y).

(ii) If A ∼ C, then [A/B] = [C/B] mod H .

(iii) If B ∼ D, then [A/B] = [A/D] mod H .

(iv) If A � C, then [A/B] ≤ [C/B] mod H .

(v) If B � D, then [A/B] ≥ [A/D] mod H .

(vi) If S is E-invariant, then [A/B]
∣∣
S

=
[
(A ∩ S)/B

]∣∣
S

mod H , i.e.,{
x ∈ S : [A/B](x) 6= [A ∩ S/B](x)

}
∈H .

(vii) The set Y =
{
x ∈ X : [A/B](x) < [C/B](x)

}
is E-invariant and Y ∩A � Y ∩ C.

(viii) If B is an E-complete section, then [A/B][B/C] ≤ [A/C] <
(
[A/B] + 1

)(
[B/C] + 1

)
mod H .

(ix) If A and C are disjoint, then [A/B] + [C/B] ≤
[
(A ∪ C)/B

]
≤ [A/B] + 1 + [C/B] + 1 mod H .

Proof. Item (i) is obvious, since sets Qn in the definition of the fraction function are E-invariant. Items (ii)
and (iii) will follow from (iv) and (v) respectively, because A ∼ C is equivalent to A � C and C � A.

(iv) Let Qn, n ∈ N ∪ {∞}, be the decomposition of [A]E ∩ [B]E associated with [A/B], and let Q′n,
n ∈ N ∪ {∞}, be the decomposition for [C/B]. Since A � C, we have [A]E ∩ [B]E ⊆ [C]E ∩ [B]E, so it is
enough to show that for all m,n ∈ N, m < n, the set Qn ∩Q′m is compressible. Set S = Qn ∩Q′m and note
that by the conditions onQn andQ′m we have A∩S ≈ n(B ∩S) and C ∩S ≈ m(B ∩S). Proposition 2.3.3
implies C ∩ S ≺ A ∩ S. Since by assumption A ∩ S � C ∩ S, we conclude that A ∩ S ≺ A ∩ S, hence
S = [A ∩ S]E is compressible.

Item (v) is proved similarly to the previous one, and we omit the argument.

(vi) If Qn, n ∈ N ∪ {∞}, is a decomposition of [A]E ∩ [B]E associated with [A/B], then

(Q∞ ∩ S) t
⊔
n

s(Qn ∩ S)

is a partition of [A ∩ S]E ∩ [B]E, which satisfies the conclusion of Proposition 2.3.4. Since we have shown
that such a partition is unique up to a compressible perturbation, we get [A/B]

∣∣
S

=
[
(A∩S)/B

]∣∣
S

mod H .

(vii) LetQn, n ∈ N∪ {∞}, be the decomposition associated with [A/B]. Note that sets Y ∩ (X \ [B]E) and
Y ∩Q∞ are empty, so the set Y =

{
x ∈ X : [A/B](x) < [C/B](x)

}
can be split into two pieces:

Y1 = Y ∩ ([B]E \ [A]E),

Y2 =

∞⋃
n=0

(Qn ∩ Y ) = [A]E ∩ Y.
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Note also that A∩ Y1 = ∅, so evidently A∩ Y1 � C ∩ Y1. It remains to check that A∩ Y2 � C ∩ Y2. If Q′n
is the decomposition associated with [C/B], then we need to show that for anym ∈ N and any n ∈ N∪{∞},
m < n, we have A ∩Qm ∩Q′n � C ∩Qm ∩Q′n. This follows from Proposition 2.3.3.

(viii) If x 6∈ [A]E or x 6∈ [C]E, then [A/B](x)[B/C](x) = 0 = [A/C](x). Since the item is claimed to
hold mod H , it remains to consider the following situation. Let Qn, Q′n, and Q′′n be the decompositions
associated with [A/B], [B/C], and [A/C], respectively. We show that the inequality is true mod H on each
S = Qk ∩Q′l ∩Q′′m for k, l,m ∈ N. We have

A ∩ S ≈ k(B ∩ S) and B ∩ S ≈ l(C ∩ S) =⇒ (A ∩ S) � kl(C ∩ S).

Since also (A ∩ S) ≈ m(C ∩ S), if kl > m, then A ∩ S is compressible by Proposition 2.3.3. Now for the
other direction, suppose m ≥ (k + 1)(l + 1). Then A ∩ S admits at least (k + 1)(l + 1)-many copies of
C ∩ S. But each set of (l + 1)-many copies of C ∩ S admits a copy of B ∩ S (because B ∩ S ≈ l(C ∩ S)),
thus A∩ S contains at least (k+ 1)-many copies of B ∩ S. Since we also have A∩ S ≈ k(B ∩ S), A∩ S is
compressible, and the inequality is proved mod H .

(ix) The argument is left for Exercise 2.7.

2.5 Subsets of uniform proportion

Lemma 2.5.1. For any aperiodic cber E onX there exists a decreasing sequence of Borel sets (Fn)∞n=0 such
that F0 = X and Fn+1 ∼ (Fn \ Fn+1) for all n ∈ N.

Proof. We start by setting F0 = X and employing Proposition 1.8.5 to partition X = F1 t Y1 into equide-
composable pieces, F1 ∼ Y1. Note that the restriction of E onto F1 must be aperiodic, so we may partition
F1 into equidecomposable F2 t Y2, and continue the process in the same fashion. The sequence Fn is as
desired.

Remark 2.5.2. We call a sequence (Fn)n∈N as in Lemma 2.5.1 a fundamental sequence for E. It is worth
noting that while each Fn in a fundamental sequence is necessarily a complete section, the sequence may not
vanish, but the saturation of its intersection S = [F∞]E, F∞ =

⋂
n Fn, must be a compressible set. Indeed, if

fn : Fn →
(
Fn−1 \ Fn

)
, n ≥ 1, are bijections from [[E]], then F∞ ∼ fn(F∞) for all n ≥ 1, and sets fn(F∞)

are pairwise disjoint, because so are sets Fn−1 \ Fn. Thus by Propositions 2.2.1, S is compressible.

For the rest of this section we pick a fundamental sequence (Fn)∞n=0 for E. Note that we necessarily have
[Fn/Fn+1] = 2 mod H for all n ∈ N, and, moreover, [Fn/Fn+m] = 2m mod H for all n,m ∈ N. It is
convenient to choose the partition of X guaranteed by Proposition 2.3.4 in such a way that

[Fn/Fn+m](x) = 2m holds for all x ∈ X.

Also, for any invariant Borel subset Y ⊆ X we agree to choose the partition which arises from intersection
with Y of the partition associated with [X/Fn], i.e.,

[Y/Fn](x) =

{
2n if x ∈ Y
0 otherwise.

Proposition 2.5.3. Let E be an aperiodic cber on X . For any A ⊆ X there exists a subset B ⊆ A such that
ϑ(B) = ϑ(A)/2 for all E-invariant probability measures ϑ on X .
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Proof. Pick some m ∈ N, and let Qn, n ∈ N ∪ {∞}, be the partition of [A]E associated with [A/Fm]. We
may ignore Q∞ as ϑ(Q∞) is always zero. Each A ∩Qn can be partitioned as

A ∩Qn = An1 t · · · tAnn tRn,

where Anj ∼ Fm ∩Qn for all 1 ≤ j ≤ n. Set

Zm =
⊔
n

(
An1 t · · ·Anbn/2c

)
and Z ′m =

⊔
n

(
Anbn/2c+1 t · · · tA

n
2bn/2c

)
.

Note that Zm ∼ Z ′m, Zm ∩ Z ′m = ∅, and (A ∩Qn) \ (Zm t Z ′m) ⊆ Ann tRn, so

0 ≤ ϑ(A ∩Qn)− ϑ(Zm ∩Qn)− ϑ(Z ′m ∩Qn) ≤ ϑ(Ann) + ϑ(Rn) ≤ 2ϑ(Fm ∩Qn).

Summing over all n we get that

0 ≤ ϑ(A)− ϑ(Zm)− ϑ(Z ′m) ≤ 2ϑ
(
Fm ∩ [A]E

)
≤ 2ϑ(Fm) = 2−m+1. (2.2)

We are ready to construct sets Bn and B′n by induction as follows. For the base, apply the above for to A
and F1 to get subsets Z1, Z

′
1 ⊆ A. Set B1 = Z1 and B′1 = Z ′1. If Bn and B′n have been constructed, apply

the above procedure to A \ (Bn t B′n) and m = n+ 1 yielding sets Zn+1, Z ′n+1. Set Bn+1 = Bn t Zn+1

and B′n+1 = Z ′n+1. Finally, set

B =
⋃
n

Bn =
⊔
n

Zn and B′ =
⋃
n

B′n =
⊔
n

Z ′n.

It is easy to see that B ∼ B′ and (2.2) implies that ϑ(A) = ϑ(B) + ϑ(B′), thus ϑ(B) = ϑ(A)/2 for any
E-invariant Borel probability measure ϑ.

Corollary 2.5.4. Let E be an aperiodic cber on X . For any A ⊆ X and any a ∈ [0, 1] there exists a subset
B ⊆ A such that ϑ(B) = aϑ(A) for all E-invariant probability measures ϑ on X .

Proof. Using Proposition 2.5.3 we may find A1 ⊆ A such that ϑ(A1) = ϑ(A)/2; set A′1 = A \ A1. Using
the same proposition forA1 we can findA2 ⊆ A1 such that ϑ(A1) = 2ϑ(A2); setA′2 = A1 \A2. Continuing
in the same fashion, we may construct a decreasing sequence An ⊇ An+1 and pairwise disjoint A′n such
that ϑ(A′n) = 2−nϑ(A) for all n ≥ 1 and all E-invariant probability measures ϑ. Take the parameter a and
consider its dyadic representation a =

∑∞
k=1 εk2

−k, εk ∈ {0, 1}. Set

B =
⊔
n≥1
εn=1

A′n.

One has
ϑ(B) =

∑
k

εkϑ(A′k) =
∑
k

εk2
−kϑ(A) = aϑ(A).

An interesting observation following from the existence of fundamental sequences and Proposition 2.3.4
is that invariant measures are uniquely determined by their values on invariant sets.

Theorem 2.5.5. Let E be an aperiodic cber, and let µ and ν be E-invariant Borel probability measures onX .
If µ(Z) = ν(Z) for all E-invariant Borel sets Z ⊆ X , then µ = ν.
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Proof. Pick a Borel set A ⊆ X and an ε > 0. We are going to show that
∣∣µ(A) − ν(A)

∣∣ < ε. Pick m0 so
large that 2−m0 < ε and consider the partition [A]E =

⊔
n∈N∪{∞}Qn associated with [A/Fm0 ]. Note thatX

can be partitioned into 2m0 many Borel pieces each equidecomposable with Fm0 , which implies that

µ(Fm0 ∩ Z) = 2−m0µ(Z) = 2−m0ν(Z) = ν(Fm0 ∩ Z)

for any invariant Borel Z ⊆ X . Note also that µ(Q∞) = 0 = ν(Q∞), as Q∞ is compressible.
On Qn the set A ∩ Qn can be partitioned as A ∩ Qn =

⊔n
i=1A

n
i t Rn, where Ani ∼ Fm0 ∩ Qn and

Rn ≺ Fm0 ∩Qn. This implies that

µ(A ∩Qn) ∈
[
nµ(Fm0 ∩Qn), (n+ 1)µ(Fm0 ∩Qn)

]
=
[
n2−m0µ(Qn), (n+ 1)2−m0µ(Qn)

]
.

A similar estimate is valid for ν as well. We therefore have∣∣µ(A)− ν(A)
∣∣ =

∣∣∣ ∞∑
n=0

µ(A ∩Qn)−
∞∑
n=0

ν(A ∩Qn)
∣∣∣ ≤ ∞∑

n=0

∣∣µ(A ∩Qn)− ν(A ∩Qn)
∣∣

≤
∞∑
n=0

∣∣(n+ 1)2−m0µ(Qn)− n2−m0µ(Qn)
∣∣

= 2−m0

∞∑
n=0

µ(Qn) = 2−m0µ(A) ≤ 2−m0 < ε.

2.6 Local measures

The following lemma describes the behavior of functions [A/Fn] as n→∞.

Lemma 2.6.1. Let A,B ⊆ X be Borel.

1. The limit limn→∞[A/Fn](x) exists mod H ; it is equal to zero on X \ [A]E and it is equal to∞ on
[A]E mod H .

2. The limit limn→∞
[A/Fn](x)
[B/Fn](x) exists1 mod H ; it assumes a non-zero finite value on [A]E∩ [B]E modulo

the Hopf’s ideal.

Proof. (1) It is clear that limn→∞[A/Fn](x) = 0 for each x ∈ X \ [A]E, since [A/Fn](x) = 0 for all such
x and all n ∈ N. We show that limn→∞[A/Fn](x) =∞ mod H for x ∈ [A]E. By Proposition 2.4.1(viii),

[A/Fn+m] ≥ [A/Fn][Fn/Fn+m] = [A/Fn] · 2m mod H .

If [A/Fn](x) 6= 0 for some n, then [A/Fn+m](x)→∞ mod H as m→∞. It is therefore enough to show
that the set

Y =
{
x ∈ [A]E : [A/Fn](x) = 0 for all n ∈ N

}
is compressible.

LetQni , i ∈ N∪{∞}, be the decomposition associated with [A/Fn]. By the definition of the fraction function,
Y =

⋂
nQ

n
0 , i.e., A ∩ Y � Fn ∩ Y for all n ∈ N. This means that

[
Fn/(A ∩ Y )

]∣∣
Y
≥ 1 mod H for all

n ∈ N. Since by Proposition 2.4.1(viii) for x ∈ Y we have[
F0

A

]
≥
[
F0

Fn

][
Fn
A

]
≥ 2n

[
Fn
A

]
≥ 2n mod H ,

1We assign value 0 to fraction if the numerator is 0 even if the denominator is also zero, and we assign the value∞ if the numerator
is infinite. The latter is less important though, as the behavior of the fraction is studied only up to compressible perturbations, and
the set of points where the fraction function is infinite is always compressible.
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we conclude that [F0/A]
∣∣
Y

= ∞ mod H , which by the definition of the fraction function and Proposi-
tion 2.3.4 implies that Y is compressible.

(2) Because of the way we defined the value of a fraction when either the numerator or the denominator is zero,
the statement is obvious for x 6∈ [A]E∩ [B]E. So we show that for x ∈ [A]E∩ [B]E the limit limn→∞

[A/Fn](x)
[B/Fn](x)

exists mod H and attains a finite non-zero value mod H . The key to this is again Proposition 2.4.1(viii),
which gives for all n,m ∈ N

[A/Fn+m] ≤
(
[A/Fn] + 1

)(
[Fn/Fn+m] + 1

)
=
(
[A/Fn] + 1

)
(2m + 1) mod H ,

[B/Fn+m] ≥ [B/Fn][Fn/Fn+m] = [B/Fn] · 2m mod H , whence
[A/Fn+m]

[B/Fn+m]
≤ [A/Fn] + 1

[B/Fn]
(1 + 2−m) mod H .

We may thus conclude that

lim sup
m→∞

[A/Fn+m]

[B/Fn+m]
≤ [A/Fn] + 1

[B/Fn]
mod H for all n ∈ N.

Note that by item (1), lim[B/Fn]
∣∣
[B]E
→ ∞ mod H , so the limsup in the formula above is finite mod H .

Also, since the limsup in the left hand side does not depend on n ∈ N, and since the inequality is true for all
n ∈ N, we get for x ∈ [A]E ∩ [B]E

lim sup
n→∞

[A/Fn]

[B/Fn]
= lim sup

m→∞

[A/Fn+m]

[B/Fn+m]
≤ lim inf

n→∞

[A/Fn] + 1

[B/Fn]
= lim inf

n→∞

[A/Fn]

[B/Fn]
mod H .

This shows that for x ∈ [A]E ∩ [B]E the limit limn→∞
[A/Fn](x)
[B/Fn](x) exists mod H and is finite. To show that it

is non-zero mod H we use similar inequalities with roles of A and B interchanged (see Exercise 2.8).

The previous lemma allows us to define the local measure function by setting

m(A, x) = lim
n→∞

[A/Fn](x)

[X/Fn](x)
= lim

n→∞

[A/Fn](x)

2n

whenever the limit exists, and default the value to 0, whenever the limit does not exist.

Proposition 2.6.2. The local measure function satisfies the following properties for all Borel A,B ⊆ X .

(i) m(A, · ) : X → R≥0 is a Borel function.

(ii) m(X,x) = 1 and m(∅, x) = 0 for all x ∈ X .

(iii) If A ∼ B, then m(A, x) = m(B, x) mod H .

(iv) If xEy, then m(A, x) = m(A, y).

(v) m(A, x) = 0 mod H if and only if A ∈H .

(vi) m(A, x) > 0 mod H for x ∈ [A]E.

(vii) If Y =
{
x ∈ X : m(A, x) < m(B, x)

}
, then A ∩ Y � B ∩ Y mod H , i.e., there exists Y ′ ⊆ Y such

that Y \ Y ′ ∈H and A ∩ Y ′ � B ∩ Y ′.

(viii) If An ⊆ X are pairwise disjoint, then m
(⋃

nAn, x
)

=
∑

nm(An, x) mod H .
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(ix) If S ⊆ X is E-invariant, then m(A, x)
∣∣
S

= m(A ∩ S, x)
∣∣
S

mod H in the sense that the set{
x ∈ S : m(A, x) 6= m(A ∩ S, x)

}
∈H .

Proof. Item (i) is obvious, since [A/Fn] are Borel, and a pointwise limit of Borel functions is Borel; (ii) is
evident from the definition of m. Items (iii) and (iv) follow from Proposition 2.4.1(ii) and Proposition 2.4.1(i)
respectively. Items (v) and (vi) form the content of Lemma 2.6.1(2). Also (ix) is evident from Proposition
2.4.1(vi). So it remains to prove (vii) and (viii).

(vii) Let
Ỹn =

{
x ∈ X : [A/Fn](x) < [B/Fn](x)

}
,

and set Y ′ = Y ∩
⋃
n Ỹn; we may partition Y ′ =

⊔
n∈N Yn, where Yn = (Y ′ ∩ Ỹn) \

⋃
i<n Yi. Note that

each Yn is E-invariant; using Yn ⊆ Ỹn and Proposition 2.4.1(vii) we have Yn ∩A � Yn ∩B, and therefore
A ∩ Y ′ � B ∩ Y ′.
(viii) This item requires some amount of work. We begin by noting that finite additivity follows easily from
Proposition 2.4.1(ix). Indeed, if A and B are disjoint, then

[A/Fn] + [B/Fn]

[X/Fn]
≤
[
(A ∪B)/Fn

]
[X/Fn]

≤ [A/Fn] + [B/Fn] + 2

[X/Fn]
.

and both the lower and the upper bounds converge tom(A, x)+m(B, x) as n→∞. Together with Proposition
2.4.1(iv), this guarantees that m(

⋃
iAi, x) ≥

∑∞
i=0 m(Ai, x) mod H . Indeed, since obviously

⋃m
i=0Ai �⋃∞

i=0Ai for all m ∈ N, we have[( m⋃
i=0

An

) /
Fn

]
≤
[( ∞⋃

i=0

An

) /
Fn

]
mod H

and so m(
⋃∞
i=0Ai, x) ≥ m(

⋃m
i=0Ai, x) =

∑m
i=0 m(Ai, x) mod H for all m ∈ N. Since the left hand side

does not depend on m, we get m(
⋃∞
i=0Ai, x) ≥

∑∞
i=0 m(Ai, x) mod H (and, in particular, the right hand

side converges modulo the Hopf’s ideal). It remains to show the inequality in the other direction.
First we show the following claim: If m(A, x) >

∑∞
i=0 m(Ai, x) mod H , whereAi are pairwise disjoint,

then
⋃∞
i=0Ai � A mod H . If m(A, x) >

∑∞
i=0 m(Ai, x) mod H , we have, in particular, that m(A, x) >

m(A0, x) mod H , so by item (vii) we have A0 � A mod H , i.e., there exists B0 ⊆ A such that A0 ∼ B0

mod H . We thus have

m(A, x) = m(B0, x) + m(A \B0, x) >
∞∑
i=0

m(Ai, x) mod H .

Since m(A0, x) = m(B0, x) mod H by (iii), we conclude that m(A \B0, x) >
∑∞

i=1 m(Ai, x) mod H , so
one may find B1 ⊆ A \ B0 such that B1 ∼ A1 mod H . Continuing the argument, we construct pairwise
disjoint Bi ⊆ A such that Bi ∼ Ai mod H , hence

⋃
iAi � A mod H as claimed.

To finish the proof of item (viii), assume towards a contradiction that we havem(
⋃
iAi, x) >

∑
im(Ai, x)

mod H for a certain family of pairwise disjoint sets Ai. We may pick k ∈ N so large that the set

S =
{
x ∈ X : m

(⋃
i

Ai, x
)
>
∑
i

m(Ai, x) + 2−k
}

is in compressible.

By adding the set X \
⋃
iAi to family Ai, we may assume without loss of generality that

⋃
iAi = X . We

have mod H the following inequalities

m(X \ Fk, x) = m(X,x)− 2−k = m
(⋃

i

Ai, x
)
− 2−k >

∑
i

m(Ai, x),
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which by the claim above implies that
⋃
iAi � X \Fk mod H . Since Fk is an E-complete section, we have,

in fact, that X =
⋃
Ai ≺ X mod H , i.e., X ∈H , and so (viii) is trivially valid mod H .

2.7 Uniqueness of local measures

We have built the local measure function m(A, x) via an explicit construction. The goal of this section is to
show that properties of m listed in Proposition 2.6.2 identify m uniquely. For the purpose of this section we
define a local measure function on X to be any map n : B ×X → R≥0 such that for all Borel A,B ∈ B

1. n(A, · ) : X → R≥0 is Borel.

2. n(X,x) = 1 mod H and n(∅, x) = 0 mod H .

3. n
(⋃

nAn, x
)

=
∑

n n(An, x) mod H for any pairwise disjoint family of Borel sets.

4. n(A, x) = n(B, x) mod H for all A ∼ B.

5. n(A, x) = n(A, y) for all x, y ∈ X such that xEy.

6. If S ⊆ X is E-invariant, then n(A, x)
∣∣
S

= n(A ∩ S, x)
∣∣
S

mod H .

We note that item (6) implies that n(A, x) = 0 mod H for x ∈ X \ [A]E. Since local measures must
attain non-negative values, additivity implies monotonicity: if A ⊆ B, then n(A, x) ≤ n(B, x) mod H ,
because

n(B, x) = n(A, x) + n
(
B \A, x

)
mod H .

Lemma 2.7.1. Let n be a local measure function on X and let F ⊆ X be such that X can be partitioned
into Borel sets X =

⋃n
i=1 F̃i such that F ∼ F̃i for all i. In this case n(F, x) = 1/n mod H .

Proof. By item (4) n(F, x) = n(F̃i, x) mod H for all i, and also by (3) n(X,x) =
∑n

i=1 n(F̃i, x) mod H .
Since by (2) n(X,x) = 1 mod H , we have modulo the Hopf’s ideal

1 = n(X,x) =
n∑
i=1

n(F̃i, x) = nn(F, x),

whence n(F, x) = 1/n mod H .

Lemma 2.7.2. If A ≈ nB, then nn(B, x) ≤ n(A, x) ≤ (n+ 1)n(B, x) mod H .

Proof. Recall that A ≈ nB means that we can partition A =
⊔n
i=1Ai t R in such a way that Ai ∼ B and

R ≺ B. Modulo the Hopf’s ideal we have

nn(B, x) =

n∑
i=1

n(Bi, x) ≤ n(A, x) =

n∑
i=1

n(Bi, x) + n(R, x) ≤ (n+ 1)n(B, x),

where the last inequality uses monotonicity and item (4).

Proposition 2.7.3. If n1 and n2 are local measures on X , then n1(A, x) = n2(A, x) mod H for all Borel
A ⊆ X .
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Proof. We are going to show that for any ε > 0 and any Borel A ⊆ X one has∣∣n1(A, x)− n2(A, x)
∣∣ < ε mod H .

Pick n0 so large that 2−n0 < ε, and note that Lemma 2.7.1 implies

nj(Fn0 , x) = 2−n0 mod H , j = 1, 2,

where Fn0 is an element in the fundamental sequence. Take the decomposition [A]E =
⊔
n∈N∪{∞}Qn

associated with [A/Fn0 ]. One has

n1(A, x) = 0 = n2(A, x) mod H for x 6∈ [A]E,

so it is enough to show that for each m ∈ N∣∣n1(A, x)− n2(A, x)
∣∣ < ε mod H for x ∈ Qm.

Pick some m0 ∈ N. Item (6) ensures that nj(A, x) = nj(A ∩ Qm0 , x) mod H for x ∈ Qm0 and j = 1, 2.
But A ∩Qm0 ≈ m0(Fn0 ∩Qm0), which by Lemma 2.7.2 means that modulo H for x ∈ Qm0 we have for
both j = 1 and j = 2

nj(A, x) = nj(A ∩Qm0 , x) ∈
[
m0nj(Fn0 , x), (m0 + 1)nj(Fn0 , x)

]
= [m02−n0 , (m0 + 1)2−n0 ].

The latter yields that
∣∣n1(A, x)− n2(A, x)

∣∣ ≤ 2−n0 < ε mod H on Qm0 , as claimed.

2.8 From local to global

In this section we show how to concoct from the local measure function a genuine measure on X whenever
X is in compressible, thus finishing the proof of Nadkarni’s Theorem.

Let E be a cber on X , pick an action of a countable group H y X which realizes E. By the standard
“change of topology” technique we may endowX with a zero-dimensional Polish topology such that the action
H y X becomes continuous. Let C be a countable family of cl open subsets of X which

• forms a basis for the topology on X;

• is an algebra of sets, i.e., it is closed under finite unions, finite intersections, and complements;

• is H-invariant in the sense that hC ∈ C for all h ∈ H and all C ∈ C.

Pick a compatible metric d on X , and let Ck = {C ∈ C : diamC ≤ 1/k}. Note that each Ck is a sequential
covering class (see Appendix B). For eachC ∈ C and k ≥ 1 we pick a (finite or infinite) partitionC =

⊔
nC

k
n

such that Ckn ∈ Ck for all n ∈ N. Since the family C is countable, we may select an E-invariant subset Z ⊆ X
such that X \ Z is compressible and for all x ∈ Z and all C,D ∈ C we have

(i) m(∅, x) = 0;

(ii) m(C, x) =
∑∞

n=0 m(Ckn, x);

(iii) m(C, x) + m(D,x) = m(C ∪D,x) whenever C ∩D = ∅;

(iv) C ∼
E
D =⇒ m(C, x) = m(D,x).

Items above are instances of corresponding items in Proposition 2.6.2 except that we may assume that they
are true for each x ∈ Z, instead of holding mod H .
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Theorem 2.8.1. Let τx : C → [0, 1] be given by τx(C) = m(C, x) for each x ∈ Z, and let µx : B → [0,∞]
be the Carathéodory measure on Borel subsets of X associated with the outer measure constructed over τ
(see Appendix B for the construction of the outer measure over τ ). For each x ∈ Z, µx is an E-invariant
Borel probability measure on X . Moreover, µx(C) = τx(C) for all C ∈ C.

Proof. Each µx is a Borel measure on X by the Carathéodory’s Theorem. Since X ∈ C, to show that µx is a
probability measure, it is enough to check the moreover part, i.e., that µx(C) = τx(C) for all C ∈ C. Pick
C ∈ C and ε > 0, we show that µx(C) ≥ τx(C) − ε. For each k ≥ 1 we have a family Ckn ∈ Ck such that
C =

⊔
nC

k
n and τx(C) =

∑
n τx(Ckn), so we may pick pn so large that τx(C)− ε/2−k ≥

∑pk
n=0 τx(Ckn). Put

YN =
⋂N
k=1

⋃pk
n=0C

k
n, and note that YN ⊇ YN+1 for all N ∈ N and that

τx(YN ) ≥ τx(C)−
N∑
k=1

ε/2−k > τx(C)− ε.

Since eachYN is covered by finitely many balls of diameter≤ 1/N and since eachCkn is closed, the intersection
Y :=

⋂
N YN is a compact subset of C.

We claim that µx(Y ) > τx(C) − ε, thus showing that also µx(C) > τx(C) − ε. Pick δ > 0 and let
Dj ∈ C, j ∈ N, be a cover of Y such that µx(Y ) + δ >

∑
j τx(Dj). Since Y is compact and each Dj is cl

open, there is a finite subcover D0, . . . ,DM of Y . We therefore also have

µx(Y ) + δ >

M∑
j=0

τx(Dj).

Since Y is compact and D0 ∪ · · · ∪ DM is open, there exists δ′ > 0 so small that d(y1, y2) > δ′ for all
y1 ∈ Y and all y2 6∈ D0 ∪ · · · ∪ DM . Since dist(Y, YN ) → 0 as N → ∞, one can find N0 so large that
YN0 ⊆ D0 ∪ · · · ∪DM . But YN0 ∈ C, so

µx(Y ) >
M∑
j=0

τx(Cj)− δ = m
( M⋃
j=0

Dj , x
)
− δ ≥ m(YN0 , x)− δ > τx(C)− ε− δ.

Since δ is arbitrary, µx(Y ) > τx(C)− ε, and so µx(C) ≥ τx(C).
The opposite inequality is evident from the definition of µx, and so we have µx(C) = τx(C) for allC ∈ C.

In particular, µx(X) = τx(X) = m(X,x) = 1, so µx is a probability measure on X .
Finally, we show that it is E-invariant. By Proposition 1.6.2, this is equivalent to showing that µx is

H-invariant. Let
D =

{
A ∈ B : µx

(
h(A)

)
= µx(A) for all h ∈ H

}
be the family of H-invariant Borel subsets of X . The set D is a λ-system. By item (iv) in the choice of Z
and H-invariance of C, we have C ⊆ D. Dynkin’s π-λ Theorem ensures that the σ-algebra generated by C is
a subset of D, thus D = B and µx is E-invariant.

For the record we now have a complete proof of the Nadkarni’s Theorem.

Corollary 2.8.2. If E is an incompressible cber, then E admits a probability invariant measure.

Proof. Since E is incompressible, the set Z above cannot be empty, so there is some x ∈ Z, and µx is then a
probability E-invariant measure.
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2.9 Ergodic decomposition

In this section we derive existence of an ergodic decomposition for any (aperiodic) cber E. This result is
originally due to Veeravalli S. Varadarajan [Var63].

For an incompressible cber E, we have selected an E-invariant Borel subset Z ⊆ X such that X \ Z is
compressible, and to each x ∈ Z there corresponds an E-invariant Borel probability measure µx on X . We
have also picked an H-invariant countable algebra of sets C which generates the σ-algebra of Borel sets. By
construction µx(C) = m(C, x) for all x ∈ Z and all C ∈ C. Two comments are in order.

One observation is that while we have µx(C) = m(C, x) for all x ∈ Z and all C ∈ C, we also have
µx(A) = m(A, x) mod H for any Borel A ⊆ X . Here is one way to see it. By refining the topology on X ,
we may pick a countable algebra C′ which contains C, A ∈ C′, and C′ is an H-invariant clopen basis for a
zero-dimensional topology on X . We can run the construction from Section 2.8 with respect to C′ and get a
subset Z ′ ⊆ X , such that X \ Z ′ is compressible, and an assignment Z ′ 3 x 7→ µ′x ∈ INV(E). Since we we
have µx(C) = µ′x(C) for all C ∈ C and all x ∈ Z ∩Z ′, Carathédory’s Uniqueness Theorem (or just CUT for
short) implies that µx = µ′x for all x ∈ Z ∩Z ′, but µ′x(A) = m(A, x) for all x ∈ Z ′, thus µx(A) = m(A, x)
mod H .

Another convenient fact is that there is no loss in assuming that Z = X (provided Z is non-empty, of
course). For we may pick x0 ∈ Z and set µx = µx0 for all x ∈ X \ Z.

Lemma 2.9.1. The assignment X 3 x 7→ µx ∈ INV(E) satisfies the following properties.

1. The map x 7→ µx(A) is Borel for any Borel A ⊆ X .

2. µx = µy whenever xEy.

3. For any x ∈ X the set Sx = {y ∈ X : µx = µy} is E-invariant and Borel.

4. If Z̃ ⊆ X is given by Z̃ =
{
x ∈ X : µx(Sx) = 1

}
, then X \ Z̃ is compressible.

5. Each measure µx, x ∈ Z̃, is ergodic.

6. The map Z̃ → EINV(E) is surjective, i.e., any ergodic measure appears as µx for some x ∈ Z̃.

7. For all x ∈ Z̃ the measure µx is the unique ergodic invariant probability measure for the restriction
of E onto Sx.

Proof. (1) Let D denote the set of Borel subsets A ⊆ X for which that map x 7→ µx(A) is Borel. Countable
additivity of measures implies that D is necessarily a λ-system. By Theorem 2.8.1 µx(C) = m(C, x) for all
C ∈ C, and therefore item (1) of Proposition 2.6.2 implies that C ⊆ D. By Dynkin’s π-λ Theorem, B ⊆ D,
as claimed.

(2) Since µx(C) = µy(C) for all C ∈ C whenever xEy, one has µx = µy by CUT.

(3) The set Sx is E-invariant by (2). Let for C ∈ C the set Sx,C be given by

Sx,C =
{
y ∈ X : µx(C) = µy(C)

}
.

By CUT Sx =
⋂
C∈C Sx,C . Each Sx,C is Borel, for

Sx,C =
{
y ∈ X : m(x,C) = m(y, C)

}
,

and Proposition 2.6.2(1).
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(4) In the notation above it is enough to prove that µx(Sx,C) = 1 mod H . Define for n ∈ N

Sx,C,n =
{
y ∈ X : [C/Fn](y) = [C/Fn](y)

}
.

If [C]E =
⊔
n∈N∪{∞}Qn is the decomposition associated with [C/Fn], then

Sx,C,n =

{(
X \ [C]E

)
∪Q0 if n = 0

Qn otherwise.

In particular, Sx,C,n is Borel. Note also that
⋂
n Sx,C,n ⊆ Sx,C . For each C and n there are only countably

many sets of the form Sx,C,n and Sx,C,n = Sy,C,n whenver y ∈ Sx,C,n. So it is enough to show that for each
S̃ of the form Sx,C,n one has µx(S̃) = 1 mod H for x ∈ S̃. This follows from the fact that S̃ is E-invariant,
so m(S̃, x) = 1 for all x ∈ S̃, and also µx(S̃) = m(S̃, x) mod H .

(5) Let Y ⊆ X be invariant. We need to show that for any x0 ∈ Z̃ either µx0(Y ) = 0 or µx0(Y ) = 1. We
know that m(Y, x) ∈ {0, 1} for all x ∈ X , and also µx(Y ) = m(Y, x) mod H . Since Sx0 is incompressible
(because µx0 is an invariant measure on Sx0), there must exist some y0 ∈ Sx0 such that µy0(Y ) = m(Y, y0),
whence µx0(Y ) = µy0(Y ) ∈ {0, 1}.

(6) Let ν be an invariant ergodic probability measure on X . First we claim that for any C ∈ C the set

Sν,C =
{
x ∈ X : µx(C) = ν(C)

}
is ν-full. Recall that for any invariant measure and any invariant set Y ⊆ X we have ν(Fn ∩ Y ) = 2−nν(Y ).
Pick ε > 0 and m0 so large that 2−m0 < ε. Let Qn, n ∈ N ∪ {∞}, be the decomposition associated with
[C/Fn]. By ergodicity of ν either ν(X \ [C]E) = 1 or ν(Qn) = 1 for exactly one n ∈ N (n =∞ is excluded,
since Q∞ is compressible). Suppose ν(Qn0) = 1 for some n0 ∈ N. In this case C ≈ n0Fm0 , and so

ν(C) = ν(C ∩Qn0) ∈
[
2−m0n0, 2

−m0(n0 + 1)
]
.

Also
µx(C ∩Qn0) ∈

[
2−m0n0µx(Qn0), 2−m0(n0 + 1)µx(Qn0)

]
for all x ∈ X.

Finally, since µx(Qn0) = 1 mod H for x ∈ Qn0 , we get that for ν-almost all x ∈ X∣∣ν(C)− µx(C)
∣∣ < 2−m0 < ε.

The above analysis was done under the assumption that ν(Qn0) = 1 for some n0 ∈ N. If ν(X \ [C]E) = 1,
then ν(C) = 0, and also µx(X \ [C]E) = 1 mod H for x ∈ X \ [C]E, so µx(C) = 0 for ν-almost all x ∈ X .
This shows that ν(Sν,C) = 1, and therefore also

ν
(⋂
C∈C

Sν,C

)
.

Since this intersection is incompressible, we may pick z0 ∈ Z̃ ∩
⋂
C∈C Sν,C . Since µz0(C) = ν(C) for all

C ∈ C, Carathéodory’s Uniqueness Theorem ensures that µz0 = ν.

(7) Pick some x ∈ Z̃ and let ν be an ergodic invariant probability measure on Sx. By item (6) there is some
z ∈ Z̃ such that µz = ν. Since µz(Sz) = 1, the intersection Sx∩Sz is non-empty; whence µx = µz = ν.

Following an earlier remark, we may redefine the assignment x 7→ µx on X \ Z̃ by picking z0 ∈ Z̃ and
setting µx = µz0 for all zx ∈ X \ Z̃. With this twist Lemma 2.9.1 can be summarized into the following very
important Ergodic Decomposition Theorem
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Theorem 2.9.2. Let E be an aperiodic incompressible cber on X . There exists an ergodic decomposition: a
Borel surjection X 3 x 7→ µx ∈ EINV(X) such that

(i) µx = µy whenever xEy.

(ii) For all x ∈ X the set
{
y ∈ X : µx = µy

}
is Borel, µx

(
{y ∈ X : µx = µy}

)
= 1, and µx is the

unique ergodic invariant probability measure on this set.

Moreover, such a decomposition is unique up to a compressible set: if x 7→ µ′x is another ergodic decompo-
sition, then

{
x ∈ X : µx 6= µ′x

}
is compressible.

Proof. Existence of ergodic decomposition follows from Lemma 2.9.1 and the remark after it. To check
uniqueness let Z = {x ∈ X : µx 6= µ′x}, and note that Z is Borel and E-invariant. Suppose it is incompress-
ible. By Nadkarni’s Theorem there must be an invariant ergodic measure ν on Z. Since x→ µx and x→ µ′x
are surjections, there must be some x1, x2 ∈ X such that µx1 = ν = µ′x2 . Since µx1(Sx1) = 1 = µ′x2(S′x2),
where

Sx1 =
{
x ∈ X : µx = µx1

}
,

S′x2 =
{
x ∈ X : µ′x = µ′x2

}
,

there is some y ∈ Sx1 ∩Z∩S′x2 . But this means that µy = µx1 = ν = µ′x2 = µ′y, contradicting the definition
of Z.

Let ν be any (not necessarily invariant) probability measure on X . For a Borel set A ⊆ X define ν̂(A)
by the formula

ν̂(A) =

∫
X
µx(A) dν(x).

It is easy to check that ν̂ is an E-invariant probability measure on X . Additivity for ν̂ follows from Tonelli’s
Theorem.

Proposition 2.9.3. Let ν be a probability measure on X . The measure ν is E-invariant if and only if ν = ν̂.

Proof. Sufficiency comes from the fact that ν̂ is E-invariant. So, suppose ν is E-invariant, we show that

ν =

∫
X
µx dν.

By Theorem 2.5.5, it is enough to check that ν(Y ) = ν̂(Y ) holds for all invariant Y ⊆ X . Since all µx are
ergodic,

ν̂(Y ) = ν
({
x ∈ X : µx(Y ) = 1

})
.

But {x : µx(Y ) = 1} = Y mod H , so ν̂(Y ) = ν(Y ).



40 CHAPTER 2. COMPRESSIBLE EQUIVALENCE RELATIONS

Exercises

Exercise 2.1. Let E be a cber on X , let A ⊆ X be an E-compressible set, and let B ⊆ A. Show that if
B ∩ [x]E = A ∩ [x]E for all x ∈ B, then B is also compressible.
Exercise 2.2. Show that HE is a Borel ideal for any cber E. In other words show that

• if A ∈H and B ⊆ A is Borel, then B ∈H ;

• if An ∈H , n ∈ N, then
⋃
nAn ∈H .

Exercise 2.3. Show that if [A]E = [B]E and both A and B are compressible, then A ∼ B.
Exercise 2.4. Show that A ≺ A if and only if the set A is compressible.

x Exercise 2.5. Let E be a cber onX . Let us say that a subsetA ofX is syndetic if there are n ∈ N and elements
fi ∈ [[E]], 1 ≤ i ≤ n, such that A ⊆ dom(fi) and X =

⋃n
i=1 fi(A). Show that E is compressible if and only

if A ∼ B for all syndetic subsets A,B ⊆ X .
x Exercise 2.6. Let E be a cber on X . Show that E is compressible if and only if there is an aperiodic smooth

equivalence relation E′ on X such that E′ ⊆ E, i.e., xE′y =⇒ xEy for all x, y ∈ X .
Exercise 2.7. Give a proof of item (ix) from Proposition 2.4.1.

Exercise 2.8. Complete the proof of Lemma 2.6.1 by showing that limn→∞
[A/Fn](x)
[B/Fn](x) for x ∈ [A]E ∩ [B]E is

non-zero mod H .
Exercise 2.9. Let E be a cber onX , and letA,B ⊆ X be such that ϑ(A) ≤ ϑ(B) for all ϑ ∈ EINV(E). Show
that there exists f ∈ [E] such that f(A) ⊆ f(B) mod H , i.e., there is a co-compressible invariant set Y ⊆ X
such that f(A ∩ Y ) ⊆ f(B ∩ Y ).

Show that if ϑ(A) = ϑ(B) for all ϑ ∈ EINV(E), then there is f ∈ [E] such that f(A) = f(B) mod H .



Chapter 3

Hyperfinite equivalence relations

3.1 Hyperfinite relations arise from Z actions

This chapter is devoted to hyperfinite relations. Most of the results are from [DJK94]. Recall that a Borel
equivalence relation is finite, or just fber for short, if every equivalence class if finite.

Definition 3.1.1. A cber E on X is said to be hyperfinite if it can be written as an increasing union of finite
equivalence relations, i.e., if there exist finite Borel equivalence relations Fn on X such that Fn ⊆ Fn+1 and
E =

⋃
n Fn.

Note that the condition for the union in the definition of hyperfiniteness to be increasing is crucial, the
notion would trivialize if this condition is dropped. Indeed, by the Feldman–Moore’s Theorem 1.2.3 we can
find a Borel action of a countable group H y X such that E = EHX , and moreover, we have a countable
family of elements hn ∈ H each having order at most 2 such that xEy ⇐⇒ x = y or hxx = y for some n.
Set Fn = {(x, y) : hnx = y} ∪∆. Since each hn has order two, F is a Borel equivalence relation with each
class having size at most two; and also E =

⋃
n Fn. So, any cber is a union of finite relations, but as we shall

see later, only very special cbers are increasing unions of fbers.

Example 3.1.2. Equivalence relation E0, which served us well so far, is hyperfinite. Indeed, if we set Fn on
2N by declaring that xFny whenever x(k) = y(k) for all k ≥ n, then Fn is a finite equivalence relation and
E0 =

⋃
n Fn.

The tail equivalence relation Et is also hyperfinite, though this is less obvious. Details of the argument
are postponed to Corollary 3.3.5.

An example of a non-hyperfinite cber is given by the Bernoulli shift of a non-abelian free groupFk y 2Fk .
The reason why such an action is not hyperfinite is best explained involving the notion of amenability, and is
postponed to the next chapter.

Proposition 3.1.3. Let E be a cber on X . The following are equivalent.

(i) E is hyperfinite.

(ii) E =
⋃
n Fn, where Fn are finite Borel equivalence relations on X , Fn ⊆ Fn+1, and each Fn-class has

size at most n.

(iii) E =
⋃
n E

n, where each En is a smooth cber on X and the union is increasing: En ⊆ En+1.

(iv) There is a Borel action of Z on X such that E = EZ
X .

41
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Proof. (i)⇒ (ii) Suppose E =
⋃∞
n=1 Fn is hyperfinite, and the union is increasing. We may assume that

F1 = ∆. For each n and n ≥ k ≥ 1 we set

Xn
k =

{
x ∈ X \

n⋃
i=k+1

Xi :
∣∣[x]Fk

∣∣ ≤ n}.
In words, Xn

n consists of the points x ∈ X whose Fn-equivalence class has size at most n; Xn
n−1 collects

those points whose Fn-class is bigger than n, but whose Fn−1-class has size at most n, etc. We may now set

F′n = Fn
∣∣
Xn

n
∪ Fn−1

∣∣
Xn

n−1
∪ · · · ∪ F1

∣∣
Xn

1
.

It is easy to check that E =
⋃∞
n=1 F

′
n, the union is increasing, and each F′n-class has size at most n.

(ii)⇒ (iii) Is immediate from Proposition 1.4.4.

(iii)⇒ (i) Let us first suppose that E itself is smooth. Pick a countable group H y X acting on X such
that E = EHX , H = {hn : n ∈ N}, and let s : X → X be a Borel selector for E. We may show that E is
hyperfinite by defining

xFny whenever (x = y) or
(
s(x) = s(y) and hks(x) = x, hms(y) = y for some k,m ≤ n

)
.

In a more verbose fashion, allFn-classes consist of a single point except for the classes “around” the transversal
points s(X), which consist of elements {hks(x) : k ≤ n}. As n growth, classes around the transversal grow
and eventually exhaust all of E, thus showing that E is hyperfinite.

Now back to the general situation. Suppose E =
⋃
n E

n is represented as an increasing union of smooth
equivalence relations, let Hn y X be countable group actions such that En = EH

n

X , Hn = {hnk : k ∈ N},
and let sn : X → X be a Borel selector for En. There is no loss in generality to assume that E0 = ∆ is the
trivial equivalence relation. We define Fn on X by setting

xFny ⇐⇒ ∃m ≤ n such that x Em y and
(
∃k0, . . . , km ≤ n such that h0

k0s0h
1
k1s1 · · ·hmkmsm(x) = x

)
and(

∃l0, . . . , lm ≤ n such that h0
l0s0h

1
l1s1 · · ·hmlmsm(y) = y

)
.

In a more verbose fashion, equivalence relation Fn can be explained as follows. Since E0 is assumed to be
the trivial equivalence relation, m = 0 in the definition of Fn corresponds to x = y, so ∆ ⊆ Fn. Let us
take m = 1 next. This corresponds to the structure of equivalence classes described at the beginning of
this argument under the assumption that E is smooth. More precisely, consult Figure 3.1, where each line
corresponds to an E1-class, and black dots represent the transversal given by s1, i.e., points x ∈ X such that
s1(x) = x. Form = 1 points x and y are Fn-equivalent if they lie in the same E1-class, so s1(x) = s1(y), and
they are “n-around s(x)” in the sense that there are h1

k1
, h1

l1
∈ H1 such that x = h1

k1
s(x) and y = h1

l1
s(x).

In Figure 3.1 this corresponds to a thin rectangle around each dot. If n = 1, this completes the description
of F1.

When n ≥ 2, points within each rectangle are F1-equivalent, but taking m = 2 we see that some
rectangles fall into a single F1-class. Each block of lines in Figure 3.1 represents an E2-class, and a hollow
circle in each block corresponds to the transversal picked by s2, i.e., a point x ∈ X such that s2(x) = x. We
now look at points n-around each such x, i.e., points of the form h2

ks(x) for k ≤ n; this is depicted by dashed
rectangles around hollow discs. We want to put points in a dashed rectangle into a single Fn-class, but this
could violate the condition Fn−1 ⊆ Fn, we need to ensure that each Fn-class is a union of Fn−1-classes. So
instead of taking points in dashed rectangles, we take the points in the thin rectangles within orbits “n-around”
discs. In other words, to each z in a dashed rectangle we apply s1, which brings us to a black dot within the
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∗

Figure 3.1: Increasing union of smooth cbers is hyperfinite.

same orbit. The dot may be inside or outside the dashed rectangle. We take all the thin rectangles around
such dots and glue them into a single F1-class. In the top-right E2-class in Figure 3.1 thin rectangles that are
glued together are depicted in darker gray.

If n = 2, this concludes the description of F2. If n ≥ 3, then we continue gluing some of the equivalence
classes as prescribed by sm for 3 ≤ m ≤ n. For example, Figure 3.1 shows a single E3-class, and the asterisk
in the bottom-left E2-class corresponds to the fixed point of s3. We first look at the points that are “n-around”
the asterisk in E3, i.e., we consider points of the form h3

ks3(x), k ≤ n, depicted by the dotted rectangle.
Again, we can’t make this points into a single F3-class as this may violate the condition for the union to be
increasing, so instead we look which E2-classes are spanned by the dotted rectangle, from each such class
pick the F2-class constructed up to this point and glue them into a single F3-class. The union of lighter gray
rectangles in the two bottom E2-classes in Figure 3.1 constitutes a single F3-class.

It is evident from the explanation above that each Fn is a finite Borel equivalence relation, they form an
increasing sequence Fn ⊆ Fn+1, and cover all of E, E =

⋃
n Fn, thus witnessing its hyperfiniteness.

(iv)⇒ (i) Let Z act in a Borel way on X , put E = EZ
X , and let T : X → X be the generator of the action,

i.e., xEy if and only if Tnx = y for some n ∈ Z. By Proposition 1.4.2 we may decompose X in a periodic
part and an aperiodic part, and since any finite cber is evidently hyperfinite, we may assume without loss of
generality that E is aperiodic, i.e., the action Z y X is free. By Proposition 1.8.3, there exists a vanishing
marker sequence Sn ⊆ X , n ∈ N.

In geometric terms, Sn selects a subset of points from each orbit of T . On some orbits there can be a
left-most point or a right-most point. In other words, let

Dn
l =

{
x ∈ Sn : Tnx 6∈ Sn for all n < 0

}
and Dn

r =
{
x ∈ Sn : Tnx 6∈ Sn for all n > 0

}
.

The sets Dn
l , Dn

r pick at most one point from each orbit, so the restriction of E onto
[⋃

n(Dn
l ∪ Dn

r )
]
E

is
smooth. Since we already know what to do with smooth pieces, one may assume that for each n ∈ N and
each x ∈ Sn there are l < 0 < r such that T lx ∈ Sn and T rx ∈ Sn, which means that each Sn partitions
every orbit of T into finite intervals. We may therefore define functions

ln : X → N
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by setting
ln(x) = min

{
l ∈ N : T−lx ∈ Sn

}
.

These functions are Borel and we may define Fn by

xFny ⇐⇒ xEy and ln(x) = ln(y).

In words, xFny whenever x and y belong to the same intervals or the partition of [x]E as determined by Sn.
Since Sn ⊇ Sn+1, we have Fn ⊆ Fn+1, and

⋂
Sn = ∅ ensures that E =

⋃
n Fn.

(i)⇒ (iv) It remains to show that any hyperfinite equivalence relation is given by an action of Z. We are
going to build the action by constructing the graph for its generator. Let E =

⋃
n Fn be represented as an

increasing union of finite equivalence relations. We construct a subset G ⊆ X ×X as follows. The space X
can be endowed with a Borel linear ordering, i.e., one may assume that X = [0, 1]. Let mn : X → X and
Mn : X → X be the functions that select the minimal point and the maximal point from the Fn-equivalence
class of its argument:

mn(x) = min{y ∈ [x]Fn} and Mn(x) = max{y ∈ [x]Fn}.

These functions are Borel. Let �n be a quasi-order given by x �n y whenever mn−1(x) ≤ mn−1(y). Set

G0 =
{

(x, y) ∈ F0 : y is the successor of x within [x]F0

}
.

Every y ∈ X which is not the minimal element of its F0-class occurs in a unique pair (x, y) ∈ G0 for some
x; also every x ∈ X which is not a maximal element of its F0-class occurs in a unique pair of the form (x, y)
for some y.

We now enlarge G0 to G1 by setting

G1 = G0 t
{

(x, y) ∈ F1 : x = M0(x), y = m0(x), and y is a �1-successor of x in [x]F1

}
.

Note that now every y ∈ X which is not the �1-minimal element of its F1-class occurs in a unique pair
(x, y) ∈ G0 for some x; similarly for not �1-maximal elements. The construction is continued in a similar
fashion — we define

G2 = G1 t
{

(x, y) ∈ F2 : x = M1(x), y = m1(x), and y is a �2-successor of x in [x]F2

}
.

Set G =
⋃
nGn, and let

Zm =
{
x ∈ X : (y, x) 6∈ G for any y ∈ X such that xEy

}
,

ZM =
{
y ∈ X : (y, x) 6∈ G for any x ∈ X such that xEy

}
.

Sets Zm and ZM intersect every E-class in at most one point and so E
∣∣
[Zm∪ZM ]E

is smooth. The restriction
of G onto X \ [Zm ∪ ZM ]E is a graph of a Borel bijection, say

T : X \ [Zm ∪ ZM ]E → X \ [Zm ∪ ZM ]E.

Since [Zm ∪ ZM ]E is smooth, it is easy to extend T to an automorphism T : X → X such that the action
Z y X given by T generates E.

Example 3.1.4. Consider the equivalence relation EV on R, called the Vitali equivalence relation, given by
xEV y whenever x− y ∈ Q. Clearly EV is a cber. Using item (iii) of Proposition 3.1.3 it is easy to show that
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EV is hyperfinite (Exercise 3.3). Note that EV is just the orbit equivalence relation of the (free) action of Q
by translations on R.

Another interesting example arises if we consider a multiplicative action of Q. More precisely, let Q× =
{q ∈ Q : q > 0} be the multiplicative group of positive rationals and let it act on R>0 by multiplication. We
may define the Pythagorean equivalence relation EP to be the orbit equivalence relation of this action: xEPy
if and only if x/y ∈ Q. Pythagorean relation is also hyperfinite, but despite looking superficially similar to
the Vitali equivalence relation showing its hyperfiniteness is much harder. This result is due to Su Gao and
Steve Jackson [GJ15], we shall prove it in the following chapter.

3.2 Generators

Definition 3.2.1. Let H y X be an action of a countable group on a standard Borel space X . A countable
Borel partition P = {Pi : i ∈ N} is said to be a countable generator for H y X if for all distinct x, y ∈ X
there exists h ∈ H and i ∈ N such that hx ∈ Pi and hy 6∈ Pi.

Remark 3.2.2. Given any countable Borel partition, we can define a map ζ : X → NH by setting ζ(x)(h) to
be the unique i ∈ N such that h−1x ∈ Pi. This map is an equivariant homomorphism into the shift action on
NH , i.e., ζ(hx) = hζ(h) for all x ∈ X and h ∈ H . A partition P is a countable generator if and only if the
corresponding map ζ : X → NH is an embedding.

For the rest of this section we work with free Borel actions of Z on a standard Borel space X . The
automorphism ofX which corresponds to 1 ∈ Z under this action will be denoted by T . We also let E = EZ

X

to denote the orbit equivalence of Z y X .

Definition 3.2.3. A Borel set A ⊆ X is recurrent if for all x ∈ A there are m < 0 < n such that Tmx ∈ A
and Tnx ∈ A. In other words,A is recurrent if its intersection with any orbit of T is either empty or bi-infinite.

Our first observation is that for any Borel A ⊆ X there is a subset A′ ⊆ A such that A′ is recurrent and
A \ A′ is smooth. Indeed, if the intersection A ∩ [x]E fails to be bi-infinite, then it either has the largest or
the smallest element in the ordering inherited from Z (recall that the action Z y X is free). Therefore we
may pick these endpoints in a Borel fashion by setting

Ã = {x ∈ A : Tnx 6∈ A for all n ≥ 1} ∪ {x ∈ A : Tnx 6∈ A for all n ≤ −1}.

The set Ã intersects every orbit of T in at most two points, and therefore is smooth; whence so is its saturation
[Ã]E. One may set A′ = A \ [Ã]E for the required recurrent subset. We have used the same idea earlier in the
proof of the implication (iv)⇒ (i) in Proposition 3.1.3.

Importance of recurrent sets lies in the idea of the induced transformation. If A ⊆ X is recurrent we
define the first return time map tA : X → N by

tA(x) = min{k ≥ 1 : T kx ∈ A}.

The induced automorphism TA : A→ A is the map TA(x) = T tA(x)x. Recurrency of A ensures that tA(x)
is defined for any x, and is also responsible for surjectivity of TA. Checking that TA is a Borel bijection is
easy and is left for Exercise 3.4.

With any recurrent set we also associate the canonical return time partition Rt = {Rn : n ≥ 1} of A,
A =

⊔∞
n=1Rn, given by Rn = t−1

A (n) ∩ A. This partition of A gives rise to the partition of [A]E once we
add sets of the form T jRk for all k ≥ 1 and all 0 ≤ j < k. This partition is called the Kakutani–Rokhlin
partition and it gives the following graphical representation of the automorphism T : [A]E → [A]E depicted
in Figure 3.2.
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R1 R2 R3 R4

TR2

T 2R3

T 3R4

Figure 3.2: Kakutani–Rokhlin partition of X .

The base of the partition consists of the set A =
⊔∞
i=1Ri. Whithin a tower on top of some Rk the

automorphism acts by lifting a point by one level. The top of each tower is mapped to the base, i.e., if
x ∈ T k−1Rk, then Tx ∈ Rn for some n ≥ 1; note also that the value of n is typically different for different
x ∈ T k−1Rk.

Lemma 3.2.4. Let P = {P1, . . . , Pm} be a finite partition of X and let A ⊆ X be an E-complete recurrent
subset of X . There exists a countable Borel partition A =

⊔
nAn such that each atom of P is a disjoint

union of translates of An: Pk =
⊔∞
m=1 T

imAjm for some im ∈ N, jm ∈ N.

Proof. We start with the Kakutani–Rokhlin partition associated withA. SinceA is assumed to be E-complete,
i.e., [A]E = X , one has a partition of the whole phase space.

→

Figure 3.3: Refining a tower of the Kakutani–Rokhlin partition.

Take the common refinement of the Kakurani–Rokhlin partition andP , transfer the atoms of this partition
to the base, and take the partition of the base they generate. Figure 3.3 shows a refinement of one Kakutani–
Rokhlin tower. It is clear that the resulting partition of the base A satisfies the conclusion of the lemma.

Theorem 3.2.5. Any aperiodic automorphism of a standard Borel space admits a countable generator.

Proof. By the proof of Lemma 2.5.1 we can find a Borel partition of X =
⊔
n F
′
n into E-complete sets. By

perturbing these sets on a smooth piece we may furthermore assume that all F ′n are recurrent. We may now
select a countable family of Borel subset Bn ⊆ X which separate points: for each x, y ∈ X there is n ∈ N
such that x ∈ Bn and y 6∈ Bn. Let Pn be the partition of X into Bn and X \Bn. To a set F ′n and partition
Pn we apply Lemma 3.2.4 to find a partition F ′n =

⊔
i∈N Ã

n
i . This results in a partition of X

X =
⊔
n∈N

⊔
i∈N

Ani ,

which we may reenumerate as X =
⊔
i∈NA

n
i . By construction for each Bn there are sequences of natural

numbers (ik), (jk) such thatBn =
⊔
k T

ikAjk . This partition is therefore a countable generator for the action,
because the family {Bn : n ∈ N} separates points.

In view of Remark 3.2.2, Theorem 3.2.5 implies that any aperiodic action Z y X is isomorphic to a
restriction of the shift Z y NZ onto an invariant subset. In particular, any aperiodic hyperfinite cber is
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isomorphic to the restriction of EZ
NZ onto an invariant subset, but it is worth stressing that the latter is a much

weaker statement.

3.3 Bi-embeddability

We have shown in Intermezzo I that E0 can be embedded into any non-smooth cber. The goal of this section is
to prove for hyperfinite relations a converse to this. We are going to show that any hyperfinite relation can be
embedded into E0. This result is originally due to Randall Dougherty, Steve Jackson, and Alexander Kechris
[DJK94].

It is helpful to take a slightly different perspective on E0. Recall that xE0y holds whenever x(k) = y(k)
for all sufficiently large k ∈ N. The fact that N has a natural linear ordering on it is irrelevant1 for the definition
of E0, as it can be equivalently described by saying that xE0y whenever the set {i : x(i) 6= y(i)} is finite. A
binary sequence x ∈ 2N can be identified with the subset {i ∈ N : x(i) = 1}. With this in mind, E0 is a cber
on the family of all subsets of N where two subsets A,B ⊆ N are E0 equivalent if and only if the symmetric
difference A M B is finite.

For any countable set A we let E0(A) to denote a cber on AN given by x E0(A) y if and only if the set{
i ∈ N : x(i) 6= y(i)

}
is finite. The discussion above shows that E0 is the same as E0(2) in this notation.

Our first lemma shows that E0(A) can be embedded into E0(2) for any countable A.

Lemma 3.3.1. For any countable set A one has E0(A) ⊆ E0(2).

Proof. Any x ∈ AN is a function N→ A. Note that x E0(A) y if and only if graph(x) M graph(y) is finite.
The map x 7→ graph(x) is therefore an embedding E0(A) into E on 2N×A given by z1Ez2 whenever the set
of i ∈ N×A such that z1(i) 6= z2(i) is finite (we identify sequences in 2N×A with subsets of N×A). Since
N×A is countable, E is clearly isomorphic to E0(2).

Lemma 3.3.2. Let E be the orbit equivalence relation induced by the shift action on NZ,i.e., E := EZ
NZ .

There exists an E-invariant Borel subset Y ⊆ NZ such that NZ \ Y is smooth and E|Y v E0.

Proof. Let N<N denote the set of all finite sequences of natural numbers. We endow this set with the lexico-
graphical ordering. More formally, given x, y ∈ N<N we set

x < y ⇐⇒
(
x(i) = y(i) for all i < min{|x|, |y|} and |x| < |y|

)
or(

x(j) < y(j) where j = min{i : x(i) 6= y(i)}
)
.

Note that this ordering induces a well-ordering on Nn for each n ∈ N. Given x ∈ NZ and u ∈ N<N we say
that u occurs in x at k ∈ Z if x(k + i) = u(i) for all 0 ≤ i < |u|; we say that u occurs in x if it occurs in x
at some k. One says that u occurs bi-infinitely often in x if the set of k ∈ Z such that u occurs in x at k is
unbounded both from below and from above.

Our first obseration is than for any u ∈ N<N the set of x ∈ NZ in which u occurs at some k ∈ Z but
does not occur bi-infinitely often is smooth. This is because a transversal for the restricion of E onto such
set can be obtained by picking those x where the smallest/largest occurance takes place at k = 0. Since the
conclusion of the lemma is claimed to hold only up to a smooth set, we may concentrate on the set Z1 of
those x where each u ∈ N<Z either does not occur at all or occurs bi-infinitely often.

Let fn : Z1 → Nn ⊆ N<N be the function that assigns to x ∈ Z1 the smallest u ∈ Nn which occurs in
x. A direct inspection of the definition shows that fn is Borel. Observe that fn(x) = fn(y) whenever xEy
and note that fn+1(x)|n = fn(x) for all x ∈ Z1. We may therefore define a function f : Z1 → NN to be the

1Note that the linear order on N is important for the definition of Et.
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limit of fn(x), i.e., f(x)|n = fn(x) for all n ∈ N. Employing the same idea as before, we note that the set of
x ∈ Z1, where {

k ∈ Z : x(k + i) = f(x)(i) for all i ∈ N
}

is non-empty and bounded from below, is smooth, as a transversal is given by{
x ∈ Z : x(i) = f(x)(i) for all i ∈ N and for all k < 0 there is i ∈ N such that x(k + i) 6= f(x)(i)

}
.

We may therefore neglect it, and set Z2 to consist of those x ∈ Z1 for which either f(x) does not occur in x,
or the set of points where it occurs in x is unbounded from below.

One last reduction comes from the observation that if the set of k ∈ Z such that f(x) occurs in x at k
is unbounded from below, then x is periodic. By Proposition 1.4.4 the restriction of E onto finite orbits is
smooth, so we may finally put Y to be the set of all x ∈ Z2 such that f(x) does not occur in x. The set NZ \Y
is smooth, and Y is E-invariant. We are going to construct an embedding E|Y v E0

(
N<N

)
. By Lemma 3.3.1

this is enough to imply E|Y v E0.
Given a sequence x ∈ Y we construct sequences rn(x) ∈ N<N, n ∈ N, as follows. Start with kx0 = 0

and set

kxn+1 =

{
smallest k > 0 such that fn+1(x) occurs at k if n is even,
largest k < 0 such that fn+1(x) occurs at k if n is odd.

Note that

· · · kx2n ≤ kx2n−2 ≤ · · · ≤ kx4 ≤ kx2 < 0 < kx1 ≤ kx3 ≤ · · · ≤ kx2n−1 ≤ kx2n+1 ≤ · · · ,

because fn+1(x) extends fn(x), and kx2n → −∞, kx2n+1 → ∞ as n → ∞ for each x ∈ Y , because f(x)
does not occur in x. Define

rn(x) =

x|
[
kxn+1, k

x
n

] if n is odd,

x|[
kxn, k

x
n+1

] if n is even.

Direct inspection shows that the map x 7→ rn(x) is Borel, and we may therefore define ξ : Y → (N<N)N by
setting ξ(x)(n) = rn(x). Note that rn+1(x) is of the form u_rn(x) for some u ∈ N<N when n is even, and
it is of the form rn(x)_u, when n is odd. Note also that r0(x) = [0, kx1 ]. This implies that ξ is injective.

r0(x)kx0 kx1

r1(x)

r2(x)

kx2 kx3

r3(x)

kx4

Figure 3.4: Spiral structure of segments of x cut by rxn.

We claim that xEy if and only if rn(x) = rn(y) for all sufficiently large n. In other words, we claim that
ξ witnesses E|Y v E0

(
N<N

)
. Pick x, y ∈ Y such that xEy. Let m ∈ Z be such that x(m+ i) = y(i) for all

i ∈ Z. By changing the roles of x and y we may assume that m ∈ N. Pick N so large that kx2n, k
y
2n < −m

and kx2n+1, k
y
2n+1 > m for all n ≥ N . One has to have kxp = kyp + m for all p ≥ 2N . Indeed, suppose for

instance p = 2n for some n ≥ N . By the definition of ky2n we know that f2n(y) occurs in y at ky2n < −m.
Since f2n(y) = f2n(x), and since x(m + i) = y(i), we see that f2n(x) occurs in x at ky2n + m which is
still below 0. As according to the definition kx2n is supposed to be the largest negative index at which f2n(x)
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occurs in x, we get kx2n ≥ ky2n + m. Similarly, f2n(y) occurs in y at kx2n − m < 0, and therefore by the
definition of ky2n we obtain ky2n ≥ kx2n −m. These two inequalities imply ky2n + m = kx2n. The argument
for showing kx2n+1 = ky2n+1 + m for n ≥ N is completely analogous. We have shown that xEy implies
rn(x) = rn(y) for all large enough n.

For the other direction suppose that rn(x) = rn(y) for all n ≥ N . We may assume N is even, and let
m ∈ N be such that kxN +m = kyN . Let also un(x) ∈ N<N be such that

rn+1(x) =

{
un(x)_rn(x) if n is even,
rn(x)_un(x) if n is odd.

Sequences un(y) are defined similarly. Since rn(x) = rn(y) for all n ≥ N , one has un(x) = un(y) for all
n ≥ N . By the choice of m we have

x(i+m) = y(i) for all i ∈ [kxN , k
x
N+1].

Since un(x) = un(y) for all n ≥ N , it is easy to check that x(i + m) = y(i) is true for all i ∈ Z, thus
xEy.

Theorem 3.3.3. Any hyperfinite cber E embeds into E0.

Proof. We have shown that every aperiodic hyperfinite E can be (invariantly) embedded into EZ
NZ on NZ.

Recall that by Proposition 1.4.4 the periodic part of any cber is smooth. In Lemma 3.3.2 we have shown that
EZ

NZ |Y v E0 for some invariant subset Y ⊆ NZ such that NZ \ Y is smooth.
Let E0 × 2 be a cber on 2N × {0, 1} which makes (x, α) equivalent to (y, β) if and only if xE0y and

α = β. We first observe that E0 × 2 v E0 as witnessed by the map 2N × 2 3 (x, α) 7→ ζ(x, α) ∈ 2N,

ζ(x, α)(n) =

{
x(n/2) if n is even,
α otherwise.

To prove the argument it is therefore enough to show that any smooth cber can be embedded into E0. This is
requested in Exercise 3.2.

Let Et(N) be the “tail equivalence relation on N”, i.e., for x, y ∈ NN one has xEt(N) y whenever there
are k1, k2 ∈ N such that x(k1 +m) = y(k2 +m) for all m ∈ N.

Theorem 3.3.4. The cber Et(N) is hyperfinite.

Proof. We first show that Et(N) v E0(N). In the spirit of the proof of Theorem 3.3.3, we pick a linear
ordering on

⋃
n Nn that extends the lexicographical ordering on Nn and satisfies s ≤ t for any t that extends

s. For x ∈ NN let uxn ∈ Nn be the minimal word that occurs in x infinitely often, and let kxn ∈ N be the place
of the first occurrence of uxn in x. Set kx0 = 0. Similarly to the proof of Theorem 3.3.3, one shows that the set
of x where kxn 6→ ∞ as n→∞ is smooth. So we may restrict our attention to the subset Z ⊆ NN of those x
for which kxn →∞ as n→∞.

Pick a bijection 〈 · 〉 :
⋃
n Nn → N. For n ≥ 1 and x ∈ Z let

rxn =
〈
x|[kxn−1,k

x
n−1]

〉
.

Consider now the map g : Z → NN given by g(x) = (rx1 , r
x
2 , . . .). It is easy to check that g is injective Borel

reduction witnessing Et(N) v E0(N). By Lemma 3.3.1, this implies Et(N) v E0.

Corollary 3.3.5. The tail equivalence relation Et is hyperfinite.
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Proof. This is immediate from Theorem 3.3.4, since Et v Et(N).

Theorem 3.3.6. Up to an isomorphism tail equivalence relation Et is the unique non-smooth compressible
hyperfinite Borel equivalence relation.

Proof. Let E be a non-smooth compressible hyperfinite Borel equivalence relation on a standard Borel space
X . By Theorem 3.3.3 E can be embedded into Et, i.e., there is a Borel A ⊆ 2N such that Et|A is isomorphic
to E. But by Proposition 2.2.6 Et|A is isomorphic to Et|[A]E . The conclusion is that E is isomorphic to a
restriction of Et onto an invariant subsets, and similarly Et is isomorhic to a restriction of E onto an invariant
subset of X . The Schröder–Bernstein construction presents an isomorphism between Et and E.

3.4 Rokhlin’s Lemma

Lemma 3.4.1. Let T be an aperiodic Borel automorphism of a standard Borel space X . There exists a
recurrent complete Borel subset A ⊆ X such that TA ∩A = ∅.

Proof. We apply Proposition 1.8.5 and pick a subset F ⊆ X such that F ∼ X \ F . By changing F on a
smooth set if necessary, we may assume that both F and X \F are recurrent. This means that for any x ∈ F
there arek1 < 0 < k2 and m1 < 0 < m2 such that T kix 6∈ F and Tmix ∈ F . Set

A = {x ∈ F : T−1x 6∈ F}.

It is easy to see that A is a recurrent complete set and TA ∩A = ∅ by construction.

Lemma 3.4.2. Let T be an aperiodic Borel automorphism of a standard Borel spaceX . For any n ≥ 1 there
exists a Borel complete recurrent subset A ⊆ X such that T iA ∩A = ∅ for all 1 ≤ i < n.

Proof. Let A1 ⊆ X by obtained by applying Lemma 3.4.1. Since A1 is recurrent, we may consider the
induced map TA1 and apply the same lemma to TA1 producing a complete recurrent BorelA2 ⊆ A1 such that
TA1A2 ∩A2 = ∅. It is straightforward to check that A2 is also a complete recurrent subset with respect to T
and T iA∩A = ∅ for 1 ≤ i ≤ 3. Repeating the same construction, we get a nested An+1 ⊆ An sequence of
complete recurrent Borel sets such that T iAn ∩An = ∅ for all 1 ≤ i < 2n. The lemma follows.

Theorem 3.4.3 (Rokhlin’s Lemma). Let T : X → X be an aperiodic automorphism. For any ε > 0 and
any n ≥ 1 there is a Borel subset B ⊆ X such that B ∩ T iB = ∅ for all 1 ≤ i < n and

ϑ
(
X \

n−1⋃
i=0

T iB
)
< ε for all invariant probability measures ϑ on X.

Proof. Given n and ε > 0 pick N so large that 1/N < ε. Lemma 3.4.2 guarantees existence of a complete
set A ⊆ X such that T iA ∩A = ∅ for all 1 ≤ i < 2Nn. Set

B =
{
Tnjx : x ∈ A, 0 ≤ j ≤ btA(x)/nc − 1

}
.

Note that tB(x) ∈ [n, 2n) for all x ∈ B, and also

X \
n−1⋃
i=0

T iB ⊆
{
T jx : x ∈ A and tA(x)− 2n ≤ j < tA(x)

}
=: Y.

Since T 2njY ∩ Y = ∅ for all 1 ≤ j < 2Nn/2n = N , we conclude that ϑ(Y ) ≤ 1/N < ε for all invariant
probability measures ϑ on X .
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Lemma 3.4.4. Let T : X → X be an aperiodic automorphism, ε ∈ (0, 1], n ≥ 1, and let B ⊆ X be such
that T iB ∩ B = ∅ for all 1 ≤ i < n and ϑ

(
X \

⋃n−1
i=0 T

iB
)
< ε for all pie measures ϑ on X . For any

δ ∈ (0, ε] there exists a subset B′ ⊆ B such that for all pie measures ϑ on X one has

ε > ϑ
(
X \

n−1⋃
i=0

T iB′
)
≥ ε− δ.

Proof. Set α = 1−ε
n , β = 1/n, and note that ϑ(B) ∈ (α, β] for all pie measures ϑ on X . Pick positive

δ′ < δ/n and observe that for any b ≥ α if r is such that 1− nrb = ε, then r ∈ (0, 1] and

1− nrc ∈ (ε− δ, ε] for all c ∈ [b, b+ δ′].

Pick an increasing sequence αm, m = 0, . . . ,M , such that α0 = α, αM = β, and αm+1 − αm ≤ δ′. Select
an ergodic decomposition x 7→ µx, and set for 0 ≤ m < M

Qm =
{
x ∈ X : µx(B) ∈ (δm, δm+1]

}
.

Note that these sets partition X into invariant Borel pieces. For each m let rm be such that

1− rmnδm = ε, i.e., rm =
1− ε
nδm

∈ [0, 1].

We apply Corollary 2.5.4 and find a subset B′m ⊆ B ∩Qm such that for any pie measure ϑ on Qm one has
ϑ(B′m) = rmϑ(B ∩Qm). Since µx(B ∩Qm) ∈ (δm, δm+1], we have for all x ∈ Qm

µx

(
Qm \

n−1⋃
i=0

T iB′m

)
= 1− nrmµx(B ∩Qm) ∈ (ε− δ, ε).

Set B′ =
⋃
mB

′
m. The construction ensures that

µx

(
X \

n−1⋃
i=0

T iB′
)
∈ (ε− δ, ε) for all x ∈ X.

Since µx exhausts all pie measures on X , the lemma follows.

Theorem 3.4.5 (Strong Rokhlin’s Lemma). Let T : X → X be an aperiodic automorphism. For any
ε ∈ (0, 1) and any n ≥ 1 there is a recurrent Borel subsetB ⊆ X such thatB ∩T iB = ∅ for all 1 ≤ i < n
and

ϑ
(
X \

n−1⋃
i=0

T iB
)

= ε for all pie measures ϑ on X.

Proof. We begin with an application of Theorem 3.4.3 an select a subset A1 ⊆ X such that T iA1 ∩A0 = ∅
for 1 ≤ i < n and ϑ

(
X \

⋃n−1
i=0 T

iA1

)
< ε for all pie measures ϑ on X . Lemma 3.4.4 lets us find a subset

A2 ⊆ A1 such that ϑ
(
X \

⋃n−1
i=0 T

iA1

)
∈ (ε− 1/2, ε) for all pie measures ϑ on X . Applying Lemma 3.4.4

again we find A2 ⊆ A1 such that ϑ
(
X \

⋃n−1
i=0 T

iA2

)
∈ (ε − 1/4, ε), and construct inductively a nested

sequence Am+1 ⊆ Am such that ϑ
(
X \

⋃n−1
i=1 T

iAm
)
∈ (ε− 2−m, ε) for all ϑ. The set B =

⋂
mAm clearly

works, except that B may not be recurrent; by altering B on a smooth set, we can make B recurrent.



52 CHAPTER 3. HYPERFINITE EQUIVALENCE RELATIONS

3.5 Von Neumann automorphisms

Definition 3.5.1. An ordered partition of a set X is a tuple P = (D1, . . . , Dn) such that X =
⊔
iDi. In

plain words, it is a partition with a specified order on its pieces. The first element D1 will be called the base
of P , and Dn will be referred to as the top of P . An ordered partition is said to be dyadic if the number of
its pieces is a power of 2.

Let E be a cber on X . A partial von Neumann automorphism on X is a pair (P, ξ), where P is a dyadic
ordered partition, P = (D1, . . . , D2n), and ξ ∈ [[E]] is such that

• dom(ξ) =
⋃2n−1
i=1 Di;

• ξ(Di) = Di+1 for all 1 ≤ i < 2n.

We say that a partial von Neumann automorphism (P2, ξ2) extends (P1, ξ1) if

• P2 refines P1;

• the base of P2 is a subset of the base of P1;

• ξ2 extends ξ1.

An automorphism S : X → X is said to be a weak von Neumann automorphism if there exists a sequence
of partial von Neumann automorphisms (Pn, ξn), n ∈ N, such that for all n ∈ N

1. Pn has 2n-many elements;

2. (Pn+1, ξn+1) extends (Pn, ξn);

3. S extends all of ξn.

The sequence of partial von Neumann automorphisms (Pn, ξn) as above will be called an approximating
sequence for S. Since partial automorphisms ξn in an approximating sequence are readily reconstructed
from S, we shall sometimes abuse the terminology and refer to the sequence of partitions Pn alone as an
approximating sequence.

A weak von Neumann automorphism S : X → X is said to be a strong von Neumann automorphism if
there exists an approximating sequence (Pn)n∈N such that partitionsPn separate points inX: for all x, y ∈ X
there are n ∈ N and Dn

i — an element of Pn — such that x ∈ Dn
i and y 6∈ Dn

i .

Odometer would be the canonical example of a strong von Neumann automorphism. But before dis-
cussing this important example, we would like to make a few simple observations about partial von Neumann
automorphisms. Suppose (P2, ξ2) extends (P1, ξ1), and let us assume that |P1| = 2n, |P2| = 2n+1, i.e., P2

has twice as many elements as P1 does. Since P2 has to refine P1, the base D1
1 of P1 is a union of some

elements of P2, say
D1

1 = D2
i1 ∪ · · · ∪D

2
ik
.

According to the definition of extension for partial von Neumann automorphisms, the base D2
1 of P2 has to

be a subset of D1
1, so we may assume i1 = 1. Also, as ξ2 has to extend ξ1, one sees that for each 1 ≤ j ≤ 2n

sets D1
j are partitioned as

D1
j = ξj−1

1

(
D2

1

)
t ξj−1

1

(
D2
i2

)
t ξj−1

1

(
D2
i3

)
t · · · t ξj−1

1

(
D2
ik

)
.

Since all these sets ξj−1
1

(
D2
il

)
= ξj−1

2

(
D2
il

)
must be elements of P2, an since we assume that |P2| = 2|P1|,

we may conclude that k = 2, i.e.,P2 partitionsD1
1 into two pieces,D1

1 = D2
1tD2

i2
, and moreover, i2 = 2n+1,

as ξ2 must extend ξ1.
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Here is a picture that explains the discussion above. If |P2| = |P1|, then P2 is obtained as follows. The
base of P1 is partitioned into two pieces, D1

1 = D2
1 tD2

2n+1, this partitions generates partitions of all levels
Di
i via the map ξ1. This results in the tower P1 being split into two sub-towers. The partitions P2 is obtained

by stacking the right sub-tower of P1 on top of its left sub-tower as show in Figure 3.5.

D2
1 D2

2n+1

P1 7→

D2
1

D2
2n+1

Figure 3.5: Extension of a partial von Neumann automorphism

To summarize, extension (P2, ξ2) is uniquely defined by specifying two things: a partition of the base of
P1 into two pieces D1

1 = D2
1 tD2

2n+1, and a map ζ : ξ2n−1
1

(
D1
)
→ D2

2n+1, which specifies how the top
of the left sub-tower is mapped onto the base of the right sub-tower. The converse is also true: any partition
of the base D1

1 = D2
1 tD2

2n+1 into two equidecomposable pieces, and any map ζ : ξ2n−1
1

(
D1
)
→ D2

2n+1,
ζ ∈ [[E]], give rise to a unique extension (P2, ξ2) of (P1, ξ1).

A similar picture is valid in general, when P2 is not necessarily twice the size of P2. Since P2 must refine
P1, and since ξ2 has to extend ξ1, it is easy to deduce that |P2| = n|P1| for some n ∈ N, and in this case P2

induces a partition of the base of P1 into n pieces. This partition, when transferred by ξ1 to each level of P1,
defines a partition of P1 into n towers, and P2 is obtained by stacking these towers on top of each other.

Note that if P2 partitions the base of P1 into four pieces, then we can first consider a coarser partition of
the base of P1 into two pieces, and define an extension (P ′, ξ′) of (P1, ξ1); the pair (P2, ξ2) will then be an
extension of (P ′, ξ′). So, in this case we can find an intermediate extension between P1 and P2. A similar
argument proves the following lemma.

Lemma 3.5.2. Let (Pk, ξk) and (Pl, ξl) be partial von Neumann automorphisms such that |Pk| = 2k, |Pl| =
2l, k ≤ l, and (Pl, ξl) extends (Pk, ξk). There exist partial von Neumann automorphisms (Pi, ξi), k < i < l,
such that for all k ≤ i < l

1. (Pi+1, ξi+1) extends (Pi, ξi);

2. |Pi+1| = 2|Pi|.

Proof. Exercise 3.5.

Example 3.5.3. As promised, we now show that odometer σ : 2N → 2N is an example of a strong von
Neumann automorphism. Periodic partitions Pn =

(
Dn

1 , . . . , D
n
2n
)

are given by cylindrical sets

Dn
i := C[si,n] =

{
x ∈ 2N : x(j) = si,n(j) for 0 ≤ j < |si,n|

}
,
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where si,n is the reverse of the binary expansion of i with enough zeroes added to ensure that |si,n| = n.
For example, if i = 7 and n = 4, then s7,4 = 1110. Set ξn = σ|⋃2n−1

i=1
Dn
i . A direct inspection show that

(Pn)n∈N is indeed an approximating sequence for σ, and it is clear that partitions Pn separate points of 2N.

The following proposition shows that odometer is indeed the example of a von Neumman automorphism,
as any strong von Neumann automorphism is isomorphic to a restriction of the odometer onto an invariant
subset.

Proposition 3.5.4. Let T : X → X be a strong von Neumann automorphism. There exists a σ-invariant
subset Y ⊆ 2N and a Borel bijection φ : X → Y such that φ ◦ T (x) = σ ◦ φ(x) for all x ∈ X .

Proof. Let (Pn, ξn) be an approximating sequence for T such that partitions Pn = (Dn
i )2n
i=1 separate points

of X . For any n ∈ N and any x ∈ X we may find the unique kn(x) such that x ∈ Dn
kn(x). Define the map

φ : X → 2N by setting

φ(x)(n) =

{
0 if 1 ≤ kn+1(x) ≤ 2n,

1 if 2n < kn+1(x) ≤ 2n+1.

Observe that knowing the segment φ(x)|n, one may reconstruct kn+1(x) uniquely. Since setsDn
kn(x) separate

points, the map φ is injective, Borel, and, as one readily checks, it is also equivariant.

For any partition P = {Di : 1 ≤ i ≤ N} and a set Q ⊆ X we let P ∩Q to denote the partition induced
on Q,

P ∩Q = {Di ∩Q : 1 ≤ i ≤ N}.

Definition 3.5.5. Let P = {Di : 1 ≤ i ≤ N} be a family of subsets of X . For a set A ⊆ X we define the
inner and outer covers of A by elements of P:

A◦(P, A) =
⋃

Di∈P
Di⊆A

Di — inner cover,

A•(P, A) =
⋃

Di∈P
Di∩A 6=∅

Di — outer cover.

The definition does not require elements of P to be disjoint, but typically P will be a partition of X , or a
restriction of a partition onto an invariant set.

We close this section with the following useful sufficient condition for the an approximating sequence to
separate points.

Lemma 3.5.6. Let (Pn)n∈N be a sequence of partitions of X such that Pn+1 extends Pn; let also (An)n∈N

be a sequence of subsets of X such that

• sets An separate points;

• each element An occurs in the sequence (An)n∈N infinitely often.

If lim supn→∞
(
A•(Pn, An)\A◦(Pn, An)

)
= ∅, then the sequence (Pn) separates points: for all x, y ∈ X

there are n ∈ N and D ∈ Pn such that x ∈ D and y 6∈ D.
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Proof. Pick x, y ∈ X , and let k ∈ N be such that x ∈ Ak and y 6∈ Ak. Since lim supn
(
A•(Pn, An) \

A◦(Pn, An)
)

= ∅, we may find N so large that

x, y 6∈ A•(Pn, An) \ A◦(Pn, An) for all n ≥ N.

By assumption, the set Ak occurs infinitely often in the sequence (An), so we find n0 ≥ N such that
An0 = Ak. Let Dn0

i , D
n0
j ∈ Pn0 be such that x ∈ Dn0

i and y ∈ Dn0
j . We claim that i 6= j, which will

witness that partitions Pn separate points. Indeed, if i = j, then

Dn0
i ∩An0 =6= ∅ because x ∈ Dn0

i ∩An0 ,

on the other hand y ∈ Dn0
i \An0 , whence

Dn0
i ⊆ A

•(Pn0 , An0) \ A◦(Pn0 , An0),

contradicting the choice of N .

3.6 Weak von Neumann automorphisms

Lemma 3.6.1. Let T : X → X be an aperiodic Borel automorphism. There exists a co-compressible
invariant subset Y ⊆ X and weak von Neumann automorphism S : Y → Y such that [T |Y ] = [S].

Proof. We are going to construct sequences of subsets An, Bn, Cn ⊆ X and induced automorphisms T ′n =
TAn and Tn = TBn with the following properties for all n ≥ 1 and all pi measures ϑ on X:

(a) An+1 ⊆ An and Bn+1 ⊆ Bn;

(b) Cn+1 = Bn \Bn+1 and C1 = X \B1;

(c) sets An and Bn are T -recurrent;

(d) T ′nAn+1 ∩An+1 = ∅ and TA1 ∩A1 = ∅;

(e) ϑ(Bn) =
2n + 1

2n+1
;

(f) ϑ
(
An \ (An+1 ∪ T ′n+1An+1)

)
= 2−2(n+1) and ϑ

(
X \ (A1 t TA1)

)
= 2−2 = 1/4;

(g) Bn+1 =

2n+1−1⊔
i=0

T inAn+1 and B1 = A1 t TA1.

The base of the construction is provided by Theorem 3.4.5, which allows us to pick a recurrent A1 such
that TA1 ∩ A1 = ∅ and ϑ

(
X \ (A1 ∪ TA1)

)
= 1/4 for all pi measures ϑ. We set B1 = A1 ∪ TA1 and

C1 = X \B1. In Figure 3.6 the set A1 is depicted in light gray. We set T ′1 = TA1 and note that B1 must be
recurrent since so is A1 ⊆ B1. Note also that

ϑ(B1) = 3/4 =
21 + 1

22

in compliance with item (e).
At the second step of the construction we apply Theorem 3.4.5 to the automorphism T ′1 : A1 → A1 and

find a recurrent Borel subset A2 ⊆ A1 such that T ′1A2 ∩ A2 = ∅ and ϑ
(
A1 \ (A2 t T ′1A2)

)
= 2−4 = 1/6.
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C1

C2 C2

C3

C3

C3

C3

A3 T2A3

T 2
2A3 T 3

2A3

T 4
2A3 T 5

2A3

T 6
2A3 T 7

2A3

Figure 3.6: Construction of sets An, Bn, and Cn.

We set T ′2 = TA2 and note that T ′2 is equal to the automorphism induced by T ′1 onto A2, letB2 =
⊔3
i=0 T

i
1A2

and C2 = B1 \B2. The set A2 is dashed in Figure 3.6. The construction continues in the same fashion.
Let B =

⋂
nBn and note that ϑ(B) = limϑ(Bn) = 1/2 for all pi measure ϑ on X . Set Pn ={

T iB(An ∩ B) : 0 ≤ i < 2n
}

, and notice that Pn witness that TB : B → B is a weak von Neumann
automorphism. Since ϑ(B) = ϑ(X \ B), we may apply Exercise 2.9 and find a co-compressible invariant
set Y ⊆ X and an automorphism f ∈ [T ] such that f(B ∩ Y ) = f(Y \B). Finally, we are ready to define
S : Y → Y by setting

S(x) =

{
f(x) if x ∈ B,
TB ◦ f−1(x) if x ∈ Y \B.

We leave the details of checking that S satisfies the conclusions of the lemma for the reader.

Lemma 3.6.2 (mod H ). Let (P, ξ) be a partial von Neumann automorphism, let A ⊆ X be a Borel set, let
ε > 0, and let x 7→ µx be an ergodic decomposition for E. There exist an extension (P ′, ξ′) of (P, ξ) and an
invariant Borel partition X =

⊔
nQn (which is coarser than the ergodic partition) such that for all x ∈ X

and all n ∈ N one has

µx

(
A•
(
P ′ ∩Qn, A ∩Qn

)
\ A◦

(
P ′ ∩Qn, A ∩Qn

))
< ε.

Proof. Let P = (R1, . . . , R2k). Define Ci to be the partition of R1 generated by ξ−i+1(A ∩Ri):

R1 = ξ−i+1(A ∩Ri) t ξ−i+1(Ri \A),

see Figure 3.7. LetR1 =
⊔l
i=1Bi be the partition ofR1 generated by all of Ci, 1 ≤ i ≤ 2k. Note that l ≤ 22k .

By refining sets Bi if necessary, we may assume that l = 22k . The partition of X will be defined by breaking
X into pieces, where µx(Bi) is almost constant for all i ≤ l.

Let δ = 2−L for L so large that 2k · 22k · δ < ε. The partition is indexed by vectors ~p ∈ Nl and is given by

Q~p =
{
x ∈ X : µx(Bi) ∈

[
δ~p(i), δ~p(i) + δ

)
for all i ≤ l

}
.

Fix a vector ~p ∈ Nl. Using Exercise 2.9, we may find Borel subsets Bi,j ⊆ Bi ∩Q~p, 1 ≤ j ≤ ~p(i), such
that µx(Bi,j) = δ for all i, j and all x ∈ Q~p. Let Ci = (Bi ∩Q~p) \

⊔~p(i)
j=1Bi,j be the part of Bi within Q~p

that is not covered by anyBi,j ; note that µx(Cj) < δ for all x ∈ Q~p. Recall that µx(R1) = 2−k for all x ∈ X .
Since µx(Bi,j) = δ, we get

µx

( l⋃
i=1

Ci

)
= 2−k − δ

( l∑
i=1

~p(i)
)
.
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ξ−2(R3 ∩A) ξ−2(R3 \A)

R3 ∩A R3 \A

Figure 3.7: Illustration of partition C3.

Since 2−k is an integer multiple of δ, we get that µx
(⋃l

i=1Ci
)

= Nδ for some N ∈ N, N ≤ l, and all
x ∈ Q~p. The latter implies (via Exercise 2.9) that

⋃
iCi can be partitioned into sets B0,j , 1 ≤ j ≤ N , such

that µx(B0,j) = δ for all x ∈ Q~p and all j. Sets Bi,j form a partition of R1 ∩ Q~p. We will no longer need
indices i, j, so let us re-enumerate sets Bi,j into a partition R1 ∩Q~p =

⊔q
i=1Gi, which satisfy the following

properties for all x ∈ Q~p:

(a) µx(Gi) = δ for all i;

(b) µx
(

(Bi ∩Q~p) \
⊔

Gj⊆Bi

Gj

)
= µx

(
(Bi ∩Q~p) \

~p(i)⊔
j=1

Bi,j

)
< δ;

(c) µx
(

(Bi ∩Q~p) \
⊔

Gj∩Bi 6=∅

Gj

)
≤ µx

( ~p(i)⊔
j=1

Bi,j ∪
N⊔
j=1

B0,j \Bi
)
≤ µx

( N⊔
j=1

B0,j

)
= Nδ ≤ lδ.

By Exercise 2.9 we may find (mod H ) automorphisms fj ∈ [E] such that

fj
(
ξ2k−1Gj

)
= Gj+1 ∩ Y for all 1 ≤ j < q.

We are now ready to define (P ′, ξ′) on Q~p by setting

P ′ ∩Q~p =
(
G1, ξ(G1), . . . , ξ2k−1(G1), G2, ξ(G2), . . . , ξ2k−1(G2), . . . , Gq, ξ(Gq), . . . , ξ

2k−1(Gq)
)
,

and declaring for x ∈ Q~p

ξ′(x) =

{
ξ(x) if x ∈ ξi(Gj) for 0 ≤ i < 2k − 1,

fj(x) if x ∈ ξ2k−1(Gj), j < q.

It is evident from the construction that (P ′, ξ′) is an extension of (P, ξ). Also,

A•
(
P ′ ∩Q~p, A ∩Q~p

)
\ A◦

(
P ′ ∩Q~p, A ∩Q~p

)
⊆

2k−1⋃
i=0

N⋃
j=1

ξi
(
B0,j

)
.

Therefore for all x ∈ Q~p

µx

(
A•
(
P ′ ∩Q~p, A ∩Q~p

)
\ A◦

(
P ′ ∩Q~p, A ∩Q~p

))
≤ 2klδ < ε.



58 CHAPTER 3. HYPERFINITE EQUIVALENCE RELATIONS

Lemma 3.6.3 (mod H ). Any partial von Neumann automorphism (P, ξ) can be extended to a weak von
Neumann automorphism S : X → X such that ESX = E.

Proof. LetP = (D1, . . . , D2k). Use Lemma 3.6.1 to find a weak von Neumann automorphism J : D1 → D1

such that EJD1
= E|D1 . Define S : X → X by

Sx =

{
ξ(x) if x ∈ Di for i < 2k,

J ◦ ξ−2k+1(x) if x ∈ D2k .

It is straightforward to check that S : X → X is a weak von Neumann automorphism and ESX = E.

Definition 3.6.4. Let (P, ξ) be a partial von Neumann automorphism, P = (D1, . . . , D2k). A fiber over
x ∈ D1, F(x), is the set of points F(x) = {ξix : 0 ≤ i < 2k}. Given y1, y2 ∈ X , we say that y1 and y2 are
the same P-fiber if there is x ∈ D1 such that y1, y2 ∈ F(x). Note that if (P ′, ξ′) extends (P, ξ) and y1, y2

are in the same P-fiber, then y1 and y2 are also in the same P ′-fiber.

Lemma 3.6.5. Let T : X → X be an aperiodic Borel automorphism such that ETX = E, and let S : X → X
be a weak von Neumann automorphism such that ESX = E. Let also Pn be an approximating sequence for S,
we assume that |Pn| = 2n. For any ergodic decomposition x → µx and any ε > 0 there exists a countable
invariant Borel partition Qn, n ∈ N, and naturals rn ∈ N, such that

(i) {Qn : n ∈ N} is coarser than the partition associated with the ergodic decomposition.

(ii) For any x ∈ Qn

µx
({
y ∈ Qn : y and Ty are in the same Prn-fiber

})
≥ 1− ε.

Proof. Exercise.

3.7 Classification of hyperfinite relations

Recall that for an ergodic decomposition x 7→ µx we define

Ξx = {y ∈ X : µx = µy}.

Theorem 3.7.1 (mod H ). Let E be a non-compressible hyperfinite Borel equivalence relation onX , and let
x 7→ µx be an ergodic decomposition for E. There exists a weak von Neumann automorphism S : X → X
such that ESX = E and for all x ∈ X the restriction S|Ξx is a strong von Neumann automorphism.

Proof. Pick a sequence εn > 0, n ∈ N, such that
∑

n εn < 0, ε0 = 1, and let T : X → X be an aperiodic
Borel automorphism that generates E. Fix a sequence (An)n∈N of Borel sets An ⊆ X which separate points
and is such that each Ak occurs in the sequence infinitely often. We are going to construct (mod H ) the
following objects:

• Weak von Neumann automorphism Sn : X → X such that ESn
X = E.

• Approximating sequences (Pn,m, ξn,m)m∈N for each Sn; Pn,m = (Dn,m
1 , . . . , Dn,m

2m ).

• A tree of partitions, i.e., E-invariant Borel sets (Qt)t∈N<N indexed by finite sequences of natural num-
bers.

• Naturals rt ∈ N for each t ∈ N<N.
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These objects will satisfy the following properties for all n ∈ N and all t ∈ Nn:

(1) Qtai ⊆ Qt for all i ∈ N.

(2) X =
⊔
t∈Nn Qt and this partition is coarser than the one associated with the ergodic decomposition.

(3) rt ≥ n.

(4) (Pn+1,k ∩Qt, ξn+1,k|Qt) = (Pn,k ∩Qt, ξn,k|Qt) for all 0 ≤ k ≤ rt. In particular{
x ∈ Qt : Sn+1x 6= Snx

}
⊆ Dn,rt

2rt .

(5) For any x ∈ Qt
µx
({
y ∈ Qt : y and Ty are not in the same Prt-fiber

})
≤ εn.

(6) For any x ∈ Qt

µx

(
A•
(
Pn,rt ∩Qt, An ∩Qt

)
\ A◦

(
Pn,rt ∩Qt, An ∩Qt

))
≤ εn.

For the base of this construction we may take Q∅ = X , use Lemma 3.6.1 to find S0 : X → X which
generates E, set r∅ = 0 and note that ε0 = 1 ensures that items (5) and (6) are trivially fulfilled.

For the induction step suppose sets Qt have been constructed for all t ∈ Nn and Sk for k ≤ n have been
defined. Pick some t ∈ Nn and restrict Sn onto Qt. We may apply Lemma 3.6.2 to the partial von Neumann
automorphism (Pn,rt ∩Qt, ξn,rt |Qt) and setAn+1∩Qt. This results in a partial von Neumann automorphism
(P ′, ξ′) on Qt which extends (Pn,rt , ξn,rt) and a partition Qt =

⊔
n Q̃n. This extension satisfies item (6)

above on each Q̃n. Let L be such that |P ′| = 2L. An application of Lemma 3.6.3 allows us to find a weak von
Neumann automorphism Sn+1|Qt that extends (P ′, ξ′) and generates E onQt. Finally, we may apply Lemma
3.6.5 to the restriction of T onto each of Q̃n and the automorphism Sn+1|Q̃n

, which yields a partition Qtai
of Qt into invariant Borel sets and naturals rtai ∈ N for which the analog of item (5) is fulfilled. Without
loss of generality we may assume that rtai ≥ max{L, n+ 1}.

Performing the same operation for each t ∈ Nn, we obtain the weak von Neumann automorphism Sn+1 :
X → X , approximations (Pn+1,m, ξn+1,m) and the tree of partitions (Qt)t∈N≤n+1 . Routine inspection shows
that all items above are satisfied.

We define sets Zi, i = 1, 2, 3, to be the following limits:

Z1 = lim sup
n→∞

⋃
t∈Nn

Dn,rt
2rt ,

Z2 = lim sup
n→∞

⋃
t∈Nn

{
y ∈ Qy : y and Ty are not in the same Pn,rt-fiber

}
,

Z3 = lim sup
n→∞

⋃
t∈Nn

A•
(
Pn,rt ∩Qt, An ∩Qt

)
\ A◦

(
Pn,rt ∩Qt, An ∩Qt

)
.

Items (3), (5), and (6) ensure that for allx ∈ X one hasµx(Zi) = 0 for i = 1, 2, and 3 respectively. Saturations
of sets Zi are therefore compressible, and by throwing them away we may for notational convenience assume
that Zi = ∅, i = 1, 2, 3. Item (4) together with Z1 = ∅ implies that for any x ∈ X there is N(x) so large
that for all n ≥ N(x) one has Snx = Sn+1x. We may therefore define S : X → X by setting Sx = SN(x)x.
The rest of the argument will show that S is the desired automorphism.

It is clear that S is a weak von Neumann automorphism, as partitions Pn,n form an approximating
sequence. Pick some Ξ = Ξx0 . Since partitionsX =

⊔
t∈Nn Qt are coarser than the partition associated with
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the ergodic decomposition, for each n there exists the unique tn ∈ Nn such that Ξ ⊆ Qt. For brevity let rtn
be denoted simply by rn. The assumption Z3 = ∅ together with Lemma 3.5.6 ensures that S|Ξ is a strong
von Neumann automorphism.

It remains to check that ESX = E. It is evident from the construction that xESX y =⇒ xEy, we show the
inverse implication by checking that for each x ∈ Ξ one has xESX Tx. As Z2 = ∅, there is N so large that x
and Tx are the same Pn,rn-fiber for all n ≥ N . But S|Ξ extends ξn,rn |Ξ, therefore x and Tx are in the same
orbit of S, as claimed.

Theorem 3.7.2 (mod H ). Let E be an aperiodic hber on X . Suppose E is not compressible, and let Z =
EINV(E) viewed as a standard Borel space. Let ∆Z denote the trivial equivalence relation onZ: z1∆Zz2 ⇐⇒
z1 = z2. The relation E is isomorphic to E0 ×∆Z .

Proof. Pick an ergodic decomposition x 7→ µx for E and apply Theorem 3.7.1 to find a weak von Neumann
automorphism S : X → X such that E = ESX and S|Ξx is a strong von Neumann automorphism for all
x ∈ X . Let Pn be an approximating sequence for S. For each x ∈ X partitions Pn ∩ Ξx separate points in
Ξx. Following the proof of Proposition 3.5.4, we define the map φ : X → 2N by setting

φ(x)(n) =

{
0 if x ∈ Dn+1

i for some i ≤ 2n,

1 otherwise.

As shown in the proof of Proposition 3.5.4, the map φ|Ξx : Ξx → 2N is an embedding of E|Ξx into E0. Since
E0 is uniquely ergodic, the image φ(Ξx) is co-compressible in 2N for every x ∈ X . We define the map
ζ : X → 2N × Z by setting

ζ(x) =
(
ξ(x), µx

)
.

It is straightforward to check that ζ is an isomorphism (mod H ) of cbers E and E0 ×∆Z .

Theorem 3.7.3. LetEi, i = 1, 2, be non-smooth aperiodic hbers onXi, i = 1, 2. If
∣∣EINV(E1)

∣∣ =
∣∣EINV(E2)

∣∣,
then E1 is isomorphic to E2.

Proof. If EINV(Ei) is empty, then the theorem follows from Theorem 3.3.6, so we may assume that Ei admit
finite invariant measures. Pick invariant Borel subsets Yi ⊆ Xi such that Ei|Yi is isomorphic to Et. Note that
Ei|Xi\Yi has the same number of pie measures as Ei does. Using Theorem 3.7.2, we find subsetsWi ⊆ Xi\Yi
such that E1|W1 is isomorphic to E2|W2 . Since both X1 \W1 and X2 \W2 are non-smooth by the choice of
Yi, we extend this isomorphism to witness E1

∼= E2.

Here is a complete list, up to an isomorphism, of non-smooth aperiodic hyperfinite equivalence relations:
Et, E0 ×∆{0,1,2,...,n−1} for some n ∈ N, E0 ×∆N, E0 ×∆2N .

Exercises

Exercise 3.1. Show that any weak von Neumann automorphism is aperiodic.
Exercise 3.2. Let E be a smooth cber. Show that E v E0.
Exercise 3.3. Using item (iii) of Proposition 3.1.3 show that the Vitali equivalence relation on R given by
xEV y ⇐⇒ x− y ∈ Q is hyperfinite.
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Exercise 3.4. Check that the induced automorphism TA : A→ A defined for a recurrent Borel set A ⊆ X is
indeed a Borel automorphism of A.
Exercise 3.5. Prove Lemma 3.5.2.





Chapter 4

Hyperfinite actions

4.1 Amenable equivalence relations

We begin by introducing a notion of an amenable equivalence relation, using an analog of the Reiter’s
condition. Appendix C reviews the notion of amenability for countable groups.

Definition 4.1.1. A cber E on X is said to be amenable if there are Borel functions φn : E→ R≥0 such that

•
∑
y∈[x]E

φn(x, y) = 1 for all x ∈ X;

•
∑
y∈[x]E

∣∣φn(x, y)− φn(x′, y)
∣∣→ 0 as n→∞ for all (x, x′) ∈ E.

Proposition 4.1.2. LetG be a countable group, and letGy X be a Borel action on a standard Borel space.
If G is amenable, then EGX is amenable.

Proof. Let E denote the orbit equivalence relation EXG . According to Reiter’s condition, there are functions
fn ∈ `1+(G), ||fn||1 = 1, such that

∣∣∣∣fn − gfn∣∣∣∣1 → 0 for all g ∈ G. We define φn : E→ R≥0 by setting

φn(x, y) =
∑
g∈G
gy=x

fn(g).

For all x ∈ X one has ∑
y∈[x]E

φn(x, y) =
∑
y∈[x]E

∑
g∈G
gy=x

fn(g) =
∑
g∈G

fn(g) = 1.

Also, for the second item from the definition of an amenable relation, take (x, x′) ∈ E, and pick h ∈ G such
that hx = x′. ∑

y∈[x]E

∣∣φn(x, y)− φn(x′, y)
∣∣ =

∑
y∈[x]E

∣∣∣∣∑
g∈G
gy=x

fn(g)−
∑
g∈G
gy=x′

fn(g)

∣∣∣∣ =

∑
y∈[x]E

∣∣∣∣∑
g∈G
gy=x

fn(g)−
∑
g∈G
gy=x

fn(hg)

∣∣∣∣ ≤
∑
y∈[x]E

∑
g∈G
gy=x

∣∣fn(g)− fn(hg)
∣∣ =

||fn − h−1fn||1 → 0 as n→∞.

63
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The relation E is therefore amenable.

Since any hyperfinite relation is generated by an action of Z, and since the group of integers is amenable,
the following is an immediate corollary of Proposition 4.1.2.

Corollary 4.1.3. Any hyperfinite cber is amenable.

The next proposition is a partial converse to Proposition 4.1.2.

Proposition 4.1.4. LetG be a countable group acting in a Borel way on a standard Borel spaceX . Suppose
the action is free, and assume that it admits a pie measure, call it µ. If the relation E = EXG is amenable, then
so is the group G.

Proof. Let φn : E→ R≥0 be the functions from the definition of amenability for E. We verify amenability
of G via the Reiter’s condition by defining fn : G→ R≥0 via

fn(g) =

∫
X
φn(x, g−1x) dµ(x).

Maps fn are seen to be in `1+(G) and satisfy ||fn||1 = 1, as∑
g∈G

∫
X
φn(x, g−1x) dµ(x) =

∫
X

∑
g∈G

φn(x, g−1x) dµ(x) =

∫
X

∑
y∈[x]E

φn(x, y) dµ(x) =

∫
X

1 dµ(x) = 1.

Finally, for any h ∈ G one has

||fn − hfn||1 =
∑
g∈G

∣∣fn(g)− fn(h−1g)
∣∣ =

∑
g∈G

∣∣∣∣∫
X
φn(x, g−1x) dµ(x)−

∫
X
φn(x, g−1hx) dµ(x)

∣∣∣∣ =

∑
g∈G

∣∣∣∣∫
X
φn(x, g−1x) dµ(x)−

∫
X
φn
(
h−1x, g−1x

)
dµ(x)

∣∣∣∣ ≤∫
X

(∑
g∈G

∣∣∣φn(x, g−1x)− φn
(
h−1x, g−1x

)∣∣∣)dµ(x) =

∫
X

( ∑
y∈[x]E

∣∣∣φn(x, y)− φn
(
h−1x, y

)∣∣∣)dµ(x).

The last expression converges to 0 as n→∞. Indeed, set

ξn(x) =
∑
y∈[x]E

∣∣φn(x, y)−
(
h−1x, y

)∣∣.
By assumption on functions φn, one has ξn(x) → 0 pointwise. Evidently 0 ≤ ξn(x) ≤ 2 for all x ∈ X .
Therefore, by Dominated Converges Theorem, one has

∫
ξn dµ→ 0, as required.

To give an example of a non-hyperfinite equivalence relation, it is therefore enough to construct a free
measure preserving action of a non-amenable group, e.g., F2 = 〈a, b〉. The natural candidate would be a
Bernoulli shift, F2 y 2F2 , but this action is not free. Fortunately, this obstacle is easy to overcome.

Proposition 4.1.5. Any infinite countable groupG admits a free Borel probability measure preserving action
on a standard Borel space. In fact, if

Free(2G) =
{
x ∈ 2G : hx 6= x for all h ∈ G

}
,

then µ
(
Free

(
2G
))

= 1 for the Bernoulli measure on 2G.



4.2. BOREL GRAPHS 65

Proof. We aim at showing that µ
(
Free

(
2G
))

= 1. Since G is countable and

Free
(
2G
)

=
⋂
h∈G

{
x ∈ 2G : hx 6= x

}
,

it is enough to check that for any fixed h ∈ G one has

µ
({
x ∈ 2G : hx 6= x

})
= 1.

Note that {
x ∈ 2G : hx = x

}
=
{
x ∈ 2G : x(g) = x(h−1g) for all g ∈ G

}
.

We split the verification into two cases. If h is of infinite order, we may take g = h2n+1 in the above to get{
x ∈ 2G : hx = x

}
⊆
{
x ∈ 2G : x(h2n) = x(h2n+1) for all n ∈ N

}
,

where the right-hand side clearly has measure 0 with respect to µ.
If h has finite order, then we may choose hn ∈ G from different cosets of 〈h〉, which ensures that

conditions x(h−1hn) = x(hn) are pairwise independent for distinct n. This allows us to conclude that for
all h of finite order

µ
({
x ∈ 2G : hx = x

})
= 0.

Thus µ
(
Free

(
2G
))

= 1, as claimed.

Propositions 4.1.4 and 4.1.5 together with Corollary 4.1.3 and the fact that the free group F2 = 〈a, b〉 is
not amenable (see Appendix C), imply that F2 y Free

(
2F2
)

generates a non-hyperfinite cber.

Corollary 4.1.6. The cber E given by the action F2 y Free
(
2F2
)

of the free group on the free part of its
Bernoulli shift is not hyperfinite.

4.2 Borel graphs

In the next section we show that all orbit equivalence relations arising from groups of polynomial growth
are hyperfinite. The result is due to Steve Jackson, Alexander Kechris, and Alain Louveau [JKL02]. Our
presentation in this section and the next one follows closely pp. 15–17 of [JKL02]. We begin by reviewing
some notions from Borel combinatorics.

Definition 4.2.1. A Borel graph on a standard Borel space X is a Borel set G ⊆ X ×X such that ∆X ⊆ G
and (x, y) ∈ G =⇒ (y, x) ∈ G for all x, y ∈ X . In other words, a Borel graph is a symmetric and reflexive
Borel relation. Given a graph G and a point x ∈ X , the neighborhood of x in G is denoted by [x]G and is
given by

[x]G =
{
y ∈ X : (x, y) ∈ G

}
.

A subset A ⊆ X is G-independent if (x, y) 6∈ G for all distinct x, y ∈ A. An independent set A is said to
be a maximal independent set if moreoverA∪{z} is not independent for any z ∈ X \A, which is equivalent
to [z]G ∩A 6= ∅ for all z ∈ X .

A graph G is said to be locally finite if [x]G is finite for all x ∈ X .

Lemma 4.2.2. For any locally finite Borel graph on a standard Borel space there exists a Borel maximal
independent set.
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Proof. Let G be a graph on X , and let (Bn)∞n=0 be a sequence of subsets of X such that the family {Bn :
n ∈ N} is closed under finite intersection and separates points in X . Let ξ : X → N be given by

ξ(x) = min
{
n : [x]G ∩Bn = {x}

}
.

Using Luzin–Novikov’s Theorem, one checks that the map ξ is Borel. Note that ξ−1(n) is an independent
subset of X for every n ∈ N. Define Yn ⊆ X inductively by setting Y0 = ξ−1(0) and

Yn+1 = Yn t
{
y ∈ ξ−1(n+ 1) : [y]G ∩ Yn = ∅

}
.

Sets Yn are Borel, and Y =
⊔
n Yn is seen to be a maximal independent subset of X .

Given a graph G on X , we denote by G2 a graph on the same space X given by

G2 =
{

(x, y) : (x, z) ∈ G and (z, y) ∈ G for some z ∈ X
}
.

Note that if G is a locally finite Borel graph on X , then so is G2.

Definition 4.2.3. Let Gn be a sequence of locally finite Borel graphs on X . We say that (Gn)n∈N satisfies
Weiss’ condition if G2

n ⊆ Gn+1, n ∈ N, and there exists K ∈ N such that for any x ∈ X there are infinitely
many n ∈ N for which any Gn-independents subsets of [x]Gn+2 has size at most K.

Lemma 4.2.4. Let E be a cber onX , and let (Gn) be a sequence of Borel graphs satisfying Weiss’ condition
such that E =

⋃
n Gn. The relation E is hyperfinite.

Proof. By Lemma 4.2.2, we may select Gn-independent subsets Zn ⊆ X . Luzin–Novikov’s Theorem lets
us find Borel maps πn : X → X such that πn(x) ∈ [x]Gn ∩ Zn for all x ∈ X . Maps πn are finite-to-one.
Define fbers Fn by

xFny ⇐⇒ πn ◦ πn−1 ◦ · · · ◦ π0(x) = πn ◦ πn−1 ◦ · · · ◦ π0(y).

Relations Fn are nested, so E′ =
⋃
n Fn is hyperfinite. Clearly E′ ⊆ E. While E′ is not necessarily equal to E,

we shall show that any E-class contains finitely many E′-classes, which by Jackson’s Theorem implies that E
is hyperfinite.

Let K ∈ N be the constant in the definition of Weiss’ condition. Suppose towards a contradiction that
there is an E-class that contains at least K + 1 many E′-classes. Pick x0, . . . , xK which are pairwise E-
equivalent and E′-inequivalent. Let n be so large that xi ∈ [x0]Gn for all i. By increasing n if necessary, we
may assume that any Gn-independent subset of [x0]Gn+2 has size at most K. Set

yi = πn ◦ · · · ◦ π0(xi).

By assumption on points xi, all elements yi are distinct elements of Zn, therefore {yi : 0 ≤ i ≤ K} is a
Gn-independent set of size K + 1. But yi ∈ [xi]Gn+1 , and therefore yi ∈ [x0]Gn+2 , contradicting the choice
of the constant K.

4.3 Groups of polynomial growth

Definition 4.3.1. Let G be a finitely generated group, and let S ⊆ G be a finite symmetric generating set for
G containing 1. The group G has polynomial growth d if bn = O

(
nd
)
, where

bn =
∣∣∣{g ∈ G : g = s1 · · · sn for some si ∈ S

}∣∣∣.
The property of having polynomial growth d is independent of the choice of generating set.
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We shall also need the following technical condition.

Definition 4.3.2. We say that a countable groupG has mild growthK,K ∈ N, if there is a sequence of finite
subsets Cn ⊆ G such that for all n ∈ N

(i) Cn is symmetric: C−1
n = Cn;

(ii) 1 ∈ Cn;

(iii) C2
n ⊆ Cn+1;

(iv) G =
⋃
nCn;

(v) there are infinitely many n such that |Cn+4| ≤ K|Cn|.

Usefulness of this definition for our purposes is illustrated by the following proposition.

Proposition 4.3.3. Let G be a countable group of mild growth K. Any orbit equivalence relation arising
from an action of G is hyperfinite.

Proof. Let E = EGX be an orbit equivalence relation of a Borel action G y X . Pick a sequence Cn ⊆ G
witnessing that G has mild growth K. Set

Gn =
{

(x, gx) : x ∈ X and g ∈ Cn
}
.

Since Cn are symmetric and contain the unit of G, each Gn is a Borel graph; it is locally finite, because Cn
is finite. Also, G =

⋃
nCn implies E =

⋃
n Gn. In view of Lemma 4.2.4, to show that E is hyperfinite, it

is enough to check that Gn satisfies Weiss’ condition. By assumption C2
n ⊆ Cn+1, therefore G2

n ⊆ Gn+1.
We claim that for any n such that |Cn+4| ≥ K|Cn| one has that any Gn+1-independent subset of [z]Gn+3

has size at most K for all z ∈ X . Indeed, suppose towards a contradiction, there is a Gn+1-independent set
{x0, . . . , xK} ⊆ [z]Gn+3 . Let gi ∈ Cn+3 be such that giz = xi. Note that Cngi ∩ Cngj = ∅ for i 6= j,
as if h1, h2 ∈ Cn are such that h1gi = h2gj , then h−1

2 h1 ∈ Cn+1 satisfies h−1
2 h1xi = xj , contradicting

Gn+1-independence of xi and xj . Since Cngi ⊆ Cn+4 are pairwise disjoint, we get |Cn+4| ≥ (K + 1)|Cn|,
which is impossible. Thus Gn satisfies Weiss’ condition and E is hyperfinite.

As the following lemma shows, the class of groups that have mild growth K is closed under inductive
limits.

Lemma 4.3.4. Let G be a countable group, and suppose that G =
⋃
nGn is written as an increasing union

of groups each having mild growth K (note that K is assumed to be independent of n). The group G also
has mild growth K.

Proof. Let Ck,n be a sequence of subsets of Gk witnessing that Gk has mild growth K. We construct
inductively a mild growth witness Dn, n ∈ N, for G. The step of induction will construct 5 sets at a time:
D5m, D5m+1, . . . , D5m+4. At each step we ensure that |D5m+4| ≤ K|D5m|. In other words, item (v) in the
definition of mild growth will be satisfied for all n such that n = 0 mod 5.

We need to take into account all sets Ck,n, so we start by enumerating all Ck,n in a sequence, i.e., we pick
a bijection α : N → N × N, α(n) =

(
α1(n), α2(n)

)
. The base of inductive construction of sets Dn is no

different from the step of induction, so we show the latter. Suppose we have constructed Di for i < 5m, and
we aim at defining D5m, . . . , D5m+4. Let C = Cα1(5m),α2(5m). Pick N1 so large that D5m−1 ⊆ GN1 and
α1(5m) ≤ N1. Since the sequence CN1,n witnesses the mild growth of GN1 , one can find N2 so large that(

D5m−1 t C
)2 ⊆ CN1,N2
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and |CN1,N2+4| ≤ K|CN1,N2 |. We set D5m+i = CN1,N2+i for i = 0, . . . , 4. Evidently, sets Di witness the
mild growth of G.

The primary example of groups with mild growth are the groups of polynomial growth.

Proposition 4.3.5. IfG is a finitely generated group of polynomial growth d, thenG has mild growth 16d+1.

Proof. Let S ⊆ G be a symmetric generating set for G and let a ∈ R≥0 be such tat |Sn| ≤ and. Set
Cn = S2n . We claim that the sequence Cn witnesses the mild growth of G. Only item (v) requires checking.
Set K = 16d + 1. Suppose towards a contradiction that |Cn+4| > K|Cn| for all n ≥ n0. Therefore also

|Cn+8| > K|Cn+4| > K2|Cn|,

and more generally |Cn+4m| > Km|Cn| for all n ≥ n0. One thus has for all m ∈ N

Km|Cn0 | < |Cn0+4m| =
∣∣S2n0+4m∣∣ ≤ a2n0d+4md = a2n0d · (16d)m.

The latter is possible only when K ≤ 16d, contradicting K = 16d + 1.

Corollary 4.3.6. All actions of finitely generated nilpotent groups are hyperfinite.

Proof. By a well-known theorem of Joseph Wolf [Wol68], all finitely generated nilpotent groups have polyno-
mial growth. Therefore Propositions 4.3.5 and 4.3.3 imply that such groups have hyperfinite actions only.

Corollary 4.3.7. All Borel actions of Qd are hyperfinite.

Proof. While the group Qd is not finitely generated, it can be written as an increasing union of subgroups

Qd =
⋃
n

(
Z[1/n!]

)d
,

each having polynomial growth d. Proposition 4.3.5, Lemma 4.3.4, and Proposition 4.3.3 altogether imply
that all Borel action of Qd are hyperfinite.



Appendix A

Spaces of Measures

Definition A.1. Let (X,B) be a standard Borel space. Recall that a signed measure or a charge on X is a
function µ : B → R such that µ(∅) = 0 and µ is countably additive, i.e., µ

(⋃
nAn

)
=
∑

n µ(An) for all
pairwise disjoint families An ∈ B.

A charge µ is said it to be a measure if µ(A) ≥ 0 for all A ∈ B.

Theorem A.2 (Hahn). Let µ be a charge on (X,B). There exists a Borel partition X = P t N such that
µ(A∩P ) ≥ 0 and µ(A∩N) ≤ 0 for allA ∈ B. Moreover, such a partition is essentially unique in the sense
that if X = P ′ tN ′ is another such partition, then µ(A ∩ P ∩Q′) = 0 = µ(A ∩ P ′ ∩Q) for all A ∈ B.

For a charge µ let X = P t Q be the decomposition as in Hahn’s Theorem. Set µ+ : B → R≥0 to be
µ+(A) = µ(A ∩ P ) and define µ− : B → R≥0 by µ− = −µ(A ∩N). The functions µ+ are µ− are, in fact,
measures, µ = µ+ − µ−, and a decomposition of this form (called the Jordan decomposition) is unique, i.e.,
if µ = ν+ − ν−, where ν+ and ν− are measures on (X,B), then ν+ = µ+ and ν− = µ−. The variation of
a charge µ is the measure |µ| = µ+ + µ−, and the total variation of µ is the real ||µ|| = |µ|(X). The set
C(X) of all charges on X is a Banach space when endowed with the norm ||µ||; the setM(X) ⊆ C(X) of
measures on X forms a closed cone in C(X) (we include the zero measure inM(X)).

Let X be a compact Polish space, and let C(X) denote the Banach space of continuous real-valued
functions.

Theorem A.3 (Riesz, Markov, Kakutani). The dual C(X)∗ to the space C(X) is isometric to the Banach
space C(X) of charges on X .

In particular, by Alaoglu’s Theorem, the unit Ball C1(X) in C(X) is a compact metrizable space in the
weak∗ topology. SinceM(X) is closed in C(X) in the weak∗ topology, the setM1(X) = C1(X) ∩M(X)
is also weak∗ compact.
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Existence and uniqueness of measures

In this appendix we would like to recall some standard notions from measure theory, which are often used to
construct Borel measures on metric spaces. Proofs of the following theorems can be found in any standard
textbook in measure theory.

Definition B.1. An outer measure on a set X is a map µ∗ : 2X → [0,∞] such that

• µ∗(∅) = 0;

• µ∗(A) ≤ µ∗(B) whenever A ⊆ B;

• µ∗
(⋃

nAn

)
≤
∑

n µ
∗(An) for any countable family An ⊆ X .

The classical Carathéodory’s Theorem gives a way of constructing a measure out of an outer measure.

Theorem B.2 (Carathéodory’s Theorem). Let µ∗ be an outer measure on X , and let B be the set of all
Y ⊆ X such that µ∗(Y ) = µ∗(Y ∩A) + µ∗

(
Y ∩ (X \A)

)
for all A ⊆ X . The set B is a σ-algebra and µ∗

restricted onto B is a σ-additive measure on B.

We call the σ-algebra B the Carathéodory σ-algebra, and the restriction of µ∗ onto B the Carathéodory
measure associated with µ∗.

Definition B.3. Let (X, d) be a metric space. An outer measure µ∗ onX is said to be a metric outer measure
if µ∗(A tB) = µ∗(A) + µ∗(B) for all A,B ⊆ X such that d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B} > 0.

Theorem B.4. If µ∗ is a metric outer measure on a metric space (X, d), then the Carathéodory σ-algebra
contains all Borel sets, and so the restriction of the Carathéodory measure associated with µ∗ onto the Borel
σ-algebra gives a Borel measure on X .

The following is an important method of constructing metric outer measures. We say that C ⊆ 2X is a
sequential covering class if there exists a countable family Ck ∈ C such that X =

⋃
k Ck. Let (X, d) be a

metric space, C ⊆ 2X be such that for each n ∈ C the family

Cn =
{
C ∈ C : diam(Cn) < 1/n

}
is a sequential covering class.

Let also τ : C → [0,∞] be any function such that τ(∅) = 0. Let µ∗n : 2X → [0,∞] be define by

µ∗n(A) = inf
{ ∞∑
k=0

τ(Ck) : A ⊆
⋃
k

Ck, Ck ∈ Cn
}
.

Note that µ∗n(A) ≥ µ∗n+1(A) for all n ∈ N and all A ⊆ X , so we may set µ∗(A) = limn→∞ µ
∗
n(A).
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Theorem B.5. The function µ∗ : 2X → [0,∞] defined above is a metric outer measure on X .

Definition B.6. Recall that a family D ⊆ 2X of subsets of X is said to be a λ-system if

1. X ∈ D;

2. if A ∈ D, then X \A ∈ D;

3. if An ∈ D are pairwise disjoint, then
⋃
nAn ∈ D.

A family P ⊆ 2X is a π-system if is closed under finite intersections: A ∩ B ∈ P , whenever A and B
belong to P .

Here is a typical way how λ-systems arise in measure theory. Let µ and ν be two probability measures
on X . The family of measurable sets

D =
{
A ⊆ X : µ(A) = ν(A)

}
is easily seen to be a λ-system.

Theorem B.7 (Dynkin’s π-λ theorem). Let P be a π-system on X , D be a λ-system on X , and suppose that
P ⊆ D. If σ(P) is the σ-algebra generated by P , then σ(P) ⊆ D.

Here is a useful immediate corollary of Dynkin’s theorem.

Theorem B.8 (Carathéodory’s Uniqueness Theorem). Let µ and ν be Borel probability measures on a stan-
dard Borel space X , let

D =
{
A ⊆ X : A is Borel and µ(A) = ν(A)

}
.

If there is a π-system P ⊆ D such that P generates the Borel σ-algebra on X , then µ = ν.

In particular, two probability measures on 2N which agree on all clopen sets must be equal.
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Amenable groups

Definition C.1. A finitely additive measure on a set X is a map µ : 2X → [0, 1] such that

(i) µ(∅) = 0, µ(X) = 1;

(ii) µ(A tB) = µ(A) + µ(B) for all disjoint subsets A,B ⊆ X .

IfH y X is an action of a countable group onX , we say that a finitely additive measure µ isH-invariant,
if µ(hA) = µ(A) for all A ⊆ X and all h ∈ H .

Definition C.2. A mean on `∞(X) is a functional τ : `∞(X) → R such that τ(f) ≥ 0 for all f ∈ `∞+ (X)
and τ(1) = 1. Suppose H y `∞(X) by isometries. We say that a mean τ is H-invariant, if τ(hf) = τ(f)
for all h ∈ H and f ∈ `∞(X).

There is a duality between finitely additive measures onX and means on `∞(X). Any mean τ on `∞(X)
gives rise to a measure µτ on X by the formula µτ (A) = τ(χA), where χA is the characteristic function of
A. Also, if µ is a finitely additive measure on X , then one can define a functional τµ on `∞(X) by setting
for f ∈ `∞(X)

τµ(f) =

∫
X
f(x) dµ(x).

The functional τµ is easily seen to be a mean. Maps µ 7→ τµ and τ 7→ µτ are inverses of each other. Moreover,
these maps preserve invariance of actions in the following sense. Suppose we have a group H acting on X .
This action can be lifted to an action on `∞(X) by hf(x) = f(h−1x). A finitely additive measure µ on X
is H-invariant if and only if the mean τµ is H-invariant. This duality will let us speak of finitely additive
measures or means depending on what is more convenient in the particular situation.

Definition C.3. A countable group G is amenable if there exists an invariant finitely additive measure for
the action Gy G by left multiplication.

The notion of amenability is of fundamental importance and has a huge number of equivalent reformu-
lations. The following lemma lists several of them. The proof is based on [Nam64], and our presentation
follows 2.8 of [Tao10].

Lemma C.4. Let G be a countable group. The following conditions are equivalent.

(i) G is amenable;

(ii) for any finite F ⊆ G and any ε > 0 there exists a finitely supported ν ∈ `1+(G) such that ||ν||1 = 1
and ||ν − fν||1 < ε for all f ∈ F .
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(iii) for any finite F ⊆ G and any ε > 0 there exists a finite set K ⊆ G such that

sup
f∈F

∣∣fK M K
∣∣

|K|
< ε.

Proof. (i)⇒ (ii) Suppose towards a contradiction that there is a finite set F ⊆ G and ε > 0 such that for
every finitely supported ν ∈ `1+(G) of norm 1 one has supf∈F ||ν − fν||1 ≥ ε. The same inequality is seen
to be true for all, not necessarily finitely supported, ν ∈ `1+(G) of norm 1.

Consider the set

Z =
{

(ν − fν)f∈F : ν ∈ `1+(G), ||ν||1 = 1
}
⊆
(
`1(G)

)|F |
.

This set is convex, and by assumption it is bounded away from 0. Hahn-Banach separation theorem guarantees
existence of a linear functional λ ∈

(
`∞(G)

)|F | such that on Z one has

λ
(
(ν − fν)f∈F

)
≥ 1.

Let λf ∈ `∞(G) be such that λ = (λf )f∈F . We therefore have for all ν ∈ `1+(G), ||ν||1 = 1:

1 ≤
∑
f∈F

λf (ν − fν) =
∑
f∈F

(
λf (ν)− λf (fν)

)
=
∑
g∈G

∑
f∈F

λf (g)ν(g)−
∑
g∈G

∑
f∈F

λf (g)ν(f−1g) =

∑
g∈G

∑
f∈F

λf (g)ν(g)−
∑
g∈G

∑
f∈F

λf (fg)ν(g) =
∑
g∈G

(∑
f∈F

λf (g)− λf (fg)

)
ν(g).

The above inequality is true for all ν ∈ `1+(G), ||ν||1 = 1. Taking ν = δg, we deduce that for all g ∈ G one
has ∑

f∈F
λf (g)− λf (fg) ≥ 1,

which implies that ∑
f∈F

(λf − f−1λf )− 1 ≥ 0.

By assumption, there exists an invariant mean τ on `∞(G). Thus

0 ≤ τ
(∑
f∈F

(λf − f−1λf )− 1
)

=
∑
f∈F

(
τ(λf )− τ(f−1λf )

)
− 1 = −1.

This contradiction proves the implication.

(ii)⇒ (iii) Fix a finite set F ⊆ G and ε > 0. By assumption there is a finitely supported ν ∈ `1+(G) such
that

sup
f∈F
||ν − fν||1 <

ε

|F |
.

We may find nested sets A1 ⊃ A2 ⊃ · · · ⊃ Ak, A1 = supp ν, and ci > 0 such that ν =
∑k

i=1 ciχAi . One
has

k∑
i=1

ci|Ai| = 1.

Also, observe that

(ν − fν)(g) =
k∑
i=1

ci
(
χAi\fAi

(g)− χfAi\Ai
(g)
)
.
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Note that all the summands above have the same sign, because sets Ai are nested. Using this, we have

||ν − fν||1 =
∑
g∈G

∣∣∣∣ k∑
i=1

ci
(
χAi\fAi

(g)− χfAi\Ai
(g)
)∣∣∣∣ =

∑
g∈G

k∑
i=1

ci

∣∣∣χAi\fAi
(g)− χfAi\Ai

(g)
∣∣∣ =

k∑
i=1

ci
∑
g∈G

∣∣∣χAi\fAi
(g)− χfAi\Ai

(g)
∣∣∣ =

k∑
i=1

ci|Ai M fAi|.

Therefore, for all f ∈ F
k∑
i=1

ci|fAi M Ai| ≤
ε

|F |
=

ε

|F |

k∑
i=1

ci|Ai|.

Summing over all f ∈ F , one has

k∑
i=1

ci
∑
f∈F
|fAi M Ai| ≤ ε

k∑
i=1

ci|Ai|.

By pigeon-hole principle, there is i such that
∑

f∈F |fAi M Ai| ≤ ε|Ai|, as claimed.

(iii)⇒ (i) By assumption, there is a sequence of finite subsets Fn ⊆ G such that∣∣gFn M Fn
∣∣

|Fn|
→ 0 as n→∞ for all g ∈ G.

Pick a non-principal ultrafilter ω on N, and define the mean τ by

τ(ν) = lim
n→ω

ν
(χFn

|Fn|

)
.

It is straightforward to check that τ is invariant.

Definition C.5. A countable group G satisfies Reiter’s condition if for any finite F ⊆ G and any ε > 0 there
exists ν ∈ `1+(G), ||ν||1 = 1, such that

sup
f∈F
||ν − fν||1 < ε.

A group satisfies Følner’s condition if for any finite F ⊆ G and ε > 0 there exists a finite set K ⊆ G
such that

sup
f∈F

|fK M K|
|K|

< ε.

Lemma C.4 establishes equivalence between amenability and the two conditions introduced in the defini-
tion above.
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Example C.6. The group Z is amenable, as {1, . . . , n}, n ∈ N, forms a sequence of Følner sets. On the other
hand, we claim that the free group F2 = 〈a, b〉 is not amenable. Indeed, suppose towards a contradiction
that µ is a finitely additive invariant measure on F2. Let S(a), S(a−1), S(b), S(b−1) be sets consisting of
elements of F2, which start with the corresponding letter, i.e.,

F2 = S(a) t S(a−1) t S(b) t S(b−1) t {e}.

First of all, note that µ({f}) = 0 for any f ∈ 〈a, b〉. Since

S(a) = aS(a) t aS(b) t aS(b−1) t {a},

invariance of µ implies
µ
(
S(a)

)
= µ

(
S(a)

)
+ µ

(
S(b)

)
+ µ

(
S(b−1)

)
,

hence µ
(
S(b)

)
= µ

(
S(b−1)

)
= 0. Similarly, µ

(
S(a)

)
= µ

(
S(a−1)

)
= 0. We conclude µ(F2) = 0, which

is absurd.
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