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LECTURE 1

Introduction to the topic

Throughout the text X denotes a Cantor space. When convenient we shall take a concrete realization
of X, e.g., 2% or 22. The group of homeomorphisms of X is denoted by Homeo(X). The natural numbers N
start with 0.

1. Minimal homeomorphisms

Definition 1.1. A homeomorphism ¢ € Homeo(X) is called periodic, if every orbit of ¢ is finite. It is called
aperiodic, if all its orbits are infinite. We say that ¢ has period n, if every orbit of ¢ has precisely n points;
in this case ¢™ = id. A homeomorphism ¢ € Homeo(X) is said to be minimal if every its orbit is dense:

Orby(z) = X for all z € X. Note that minimal homeomorphisms are always aperiodic.

Proposition 1.2. For a homeomorphism ¢ € Homeo(X) the following conditions are equivalent:
(i) ¢ is minimal.
(ii) Every forward orbit of ¢ is dense: {¢"(x)}, ey = X for allz € X.
(iii) There are no nontrivial closed invariant subspaces of X : if F C X is closed and ¢(F) = F, then either
F=gorF=X.

N .
(iv) For any non-empty clopen U C X there is N € N such that X = | ¢*(U).
i=0
Proor. = Let FF C X be a closed non-empty invariant subset with x € F. By invariance
Orby(z) C F, hence X = Orby(z) C F.

= Pick z € X and let R = {¢"(x)},cy; note that ¢(R) C R. If F' =, oy ¢"(R), then
O(F) =) ¢"(R)=F

n>1
and therefore F' = X, whence R = X.
= If U is open and non-empty, then F' = ~ J, o, #"(U) is closed, invariant and FF NU = @,
hence F' = @. Therefore | J,,, ¢"(U) = X, which by compactness implies UInISM ¢"(U) = X for some M.

Hence
2M

X =¢"x)=Jo" (V)

= (f) For any x € X the set ~ Orb,(x) is open, invariant, and does not contain x, hence must be
empty. O

Example 1.3. The odometer o : 2V — 2% is a homeomorphism defined as follows. For x € 28\ {1}, where
1 is the constant sequence of ones, let n be the smallest integer such that z(n) = 0. The image o(z) is then
defined by

0 if 1 <mn,
1 if i =n,
x(i) ifi>n.
Set 0(1) = 0. For examples if z = 1110y, then o(x) = 0001 y.

o(2)(i) =

Exercise 1.4. Check that o : 2¥ — 2V is a homeomorphism. Show that it is minimal.

Example 1.5. Another important example is the shift s : 22 — 2% defined by s(z)(i) = z(i + 1). It is easy
to see that s is indeed a homeomorphism.
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Exercise 1.6. Show that s is not minimal, but s is transitive: there is z € 22 such that the orbit Orbg(x)
is dense in 27Z.

While the shift homeomorphism is not minimal, it has lots of minimal subshifts. We say that a sequence
x € 2% is homogeneous if for every finite sequence a € 2<% that occurs in x there is a number N(«) such
that any interval of length N(«) in = contains «.

Theorem 1.7. Let x € 2% be a binary sequence, and let Y = Orbg(z). The subshift (Y, s|y) is minimal if
and only if © is homogeneous.

PROOF. Suppose z € X is homogeneous and pick a y € Y. Our goal is to show that Orb(y) is dense
in Y. For this it is enough to show that x € Orb4(y). Pick a segment « of x. By homogeneity there is an
integer N(«) such that any segment of x of length N(«) contains a subsegment a. Pick any subsegment [
of y of length N(«). Since y € Y, this subsegment S must also occur in x, whereby using homogeneity we
see that a occurs in y. Therefore z € Orb,(y).

For the other direction we show the contrapositive. Suppose x is not homogeneous. It means that there
is a segment « of x and infinitely many segments 3,, of  such that the length of 3, growth and 3,, does not
contain the subsegment . Assume for convenience that the length of 3, is 2n+ 1. Let y,, € X be such that
Ynl[=n,n] = Bn and a does not occur in y,. By compactness of X there is a y € X and (ny)ren such that

Yn, — Y. It is now easy to see that y € Orb(z) and that z & Orbs(y), whence s|y is not minimal. O

Proposition 1.8. For any ¢ € Homeo(X) there is a closed non-empty Fy C X such that ¢(Fy) = Fy and
(Fo, d|F,) is minimal.

PRrROOF. Let
F={F C X | F is closed, non-empty, and ¢(F) = F }
be the family of closed invariant subsets ordered by inclusion. Note that if (F))xea is a chain in F, then
(a F> also belongs to F. Hence by Zorn’s lemma we can find a minimal element Fy € F. The system

(Fo, ¢|F,) is minimal by item of Proposition a
2. Full groups

Definition 1.9. Let ¢ € Homeo(X) be a homeomorphism of a Cantor space X. The full group of ¢ is
denoted by [¢] and is defined to be

[¢] = {g € Homeo(X) |Vz € X In(z) € Z g(z) = ¢" @ (z)}.

With an element g € [¢] we associate the cocycle n = ng : X — 7Z given by g(x) = ") (z). Note that if
¢ is aperiodic, then the cocycle is uniquely defined. The topological full group of ¢ is denoted by [¢] and is
the subgroup of those g € [¢] for which the cocycle ny is continuous (or, more formally, can be chosen to be
continuous) with respect to the discrete topology on the integers:

[¢] ={g € [¢] | ng: X — Z is continuous }.

Proposition 1.10. Let ¢ € Homeo(X) be any homeomorphism. An element g € Homeo(X) is in the
topological full group g € [¢] if and only if there are clopen sets Ay, ..., An and integers ky, ..., ky € Z such
that X = A U---UA, andgAi :¢ki A,

PrOOF. If g € [¢], then the cocycle ny : X — Z can be chosen to be continuous, and therefore the
image ny(X) is finite; let k1,...,k, € Z be the integers in the image of n,. We set 4; = n;l(ki) and the
necessity is proved. For the sufficiency we note that the cocycle n, can be constructed by setting ng|a, = k;.

If the decomposition of X into the sets A; is clopen, then the cocycle n, is continuous. O

Definition 1.11. The support of a homeomorphism ¢ € Homeo(X) is defined to be the complement of the
interior of the set of fixed points, or equivalently

supp(¢) ={z € X | ¢(z) # v }.

Note that support of an aperiodic homeomorphism is necessarily all of X.

In general support of a homeomorphism is not necessarily open. The following proposition shows that
elements of the topological full group of a minimal homeomorphism are special in this sense.
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Proposition 1.12. Let ¢ € Homeo(X) be minimal. The support supp(g) of any g € [¢] is a clopen subset
of X.

PROOF. Pick a g € [¢] and find clopen subsets A; for i € I such that g|a, = ¢%|a,, where I C N is
finite. The support of ¢ is then given by

supp(9) = | 4,
1€I\{0}
and is therefore clopen. (|
Proposition 1.13. Let ¢ € Homeo(X) be minimal. For any g € [¢] and any n € N the set
X, ={z € X | Orby(x) has cardinality n }
is clopen.

PROOF. Let P = (A;);cr be a clopen partition of X such that g|a, = ¢*|,, where I C N is finite. Let
(Bj){L1 = Vi—o ¢ *(P) be the refinement of the partitions ¢~*(P) for 0 < k < n. For each B; there is
an integer m; such that g|p, = ¢™|p,. Let 2 € X,, and let jo,...,j, be such that ¢*(z) € Bj, for all
0 < k < n. By the definition of X,, we have ¢"(z) = x and therefore

¢22:0 My, (x) =ux,

which is possible only if >°;'_,m;, = 0, whence B;; C X,,. This shows that X,, is open.
Since

Xo={zeX|g"@) =2} \ UloeX|g"@ =2},

m<n

the set X, is also closed. O
Proposition 1.14. Let f € Homeo(X) be a periodic homeomorphism of period n. There exists a clopen set
A C X such that X =| |/ fi(A).

PRrROOF. For any point € X we can find a clopen neighbourhood U, C X such that f{(U,)NU, = @
for all 1 < i < n. By compactness of X there is a finite family z1,...,zxy € X such that X = Uj<N Usg,.
We now construct sets A; inductively. Put A; = U,,, and -

n—1
Aj = A; U (Ugcj+1 \ U fi(Aj)> :
=0

It is now straightforward to see that A = A satisfies the conclusion of the proposition. |

3. Kakutani—Rokhlin partitions

We would like to describe an important space decomposition construction that is attributed to Kakutani
and Rokhlin. Let ¢ € Homeo(X) be a minimal homeomorphism and let D C X be a non-empty clopen
subset. We define the first return function tp 4 =tp : D — N by

tp(z) =min{n >1|¢"(z) € D}.
By minimality of ¢, the function tp is well-defined and continuous. We can therefore find a number N,

positive integers ki, ..., kyn, and a partition D = Dy U --- LU Dy into non-empty clopen subsets such that
tp|p, = ki The space X can then be written as a disjoint union of sets (see Figure

X =Dy U¢D)U--- UM YD) UDyU(Dy) -~ U2 Do) U...UDyUG(Dy)U...Le" "1 Dy).

One refers to the family D;, ¢(D;), ..., ¢*~1(D;) as to the tower over D;. The number k; is then the height
of this tower. The set D; is the base of the tower, and ¢*~1(D;) is its top. Note that every point in the top
level of some tower goes under the action of ¢ to a base of a (possibly different) tower.

Exercise 1.15. Draw the Kakutani-Rokhlin partition of the odometer o over the cylindrical set D = {z €
2N | 2(i) =0, i <n} for some fixed n.

When building a Kakutani-Rokhlin partition it is sometimes useful to assume that the obtained partition
is finer than a given partition P. The following proposition assures that this can always be done.
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¢°(D2)
¢*(Ds)

¢*(D1)

¢(Ds)

D, D, Ds D,
F1GURE 1. A Kakutani-Rokhlin partition of X with base D.

Proposition 1.16. Let ¢ € Homeo(X) be minimal, let D C X be a clopen subset, and let P be a partition of
X. There are positive integers K, Jy, ..., Jk and clopen subsets D(i,7) C X indexed by pairs (i,]) satisfying
1<i< K and 0 < j < J; such that
(i) X =L, ; D(i,7) and this partition is finer than P;
(”) D= |_|z D(’i,O),’
(iti) ¢(D(i,§)) = D(i,j+1) for all1 <i< K and 0 < j < J; — 1
(iv) ¢(D(i,J; —1)) €D forall1 <i < K.

PRrOOF. The Kakutani-Rokhlin partition over the base D described above satisfies all the items except
possibly for the first one: it may not refine the partition . We shall now explain how the Kakutani—-Rokhlin
partition can be refined.

Suppose we are given sets 5(2 j)for1 <i< K and 0 < 1< J; that partition X and that satisfy all the
items above with the exception that we do not require for this partition to be finer than P. Take a base of
one of the towers D(i,0). If we are given a partition of D(i,0) into non-empty clopen sets D(i,0) = L, Fp
where 1 < p < M, then we can divide the ith tower into M towers (see Figure ' This will naturally deﬁne

R F | F
D(i,0) By Fy F;

FIGURE 2. Refining a Kakutani-Rokhlin partition.

a refined Kakutani-Rokhlin partition with K + M — 1 many towers. N
To obtain a partition that is finer than P we do as follows. For each level D(i, j) let F; ; be the partition

of D(i,j) induced by P:
Fij = {D(i,j) N Py | P € P and D(i, §) N P is non-empty }.
Let C; ; be the partition of 5(@ 0) obtained by transferring down the partition F; ;:
{(b ( (4,7) ﬂPk) ’Dzy ﬂPke]:’j}

Let finally C be the partition of D generated by all the partitions C; ;. Note that by construction C is finer
that the partition given by the sets D(i,0).

Suppose for example that the partition D(%,j) has three towers of height 4, 6 and 6 respectively (see
Figure , and the partition P has four pieces P, 1 < k < 4 which are shown in Figure The little

bars show how l~)(z, j) is partitioned into F; ; and dashed lines show how the partitions F; ; give rise to the
partition C of the base.
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Py

FI1GURE 3. Refining the Kakutani-Rokhlin partition according to the partition P of four pieces.

We now refine the Kakutani—-Rokhlin partition 5(1, j) by splitting towers according to the partition C
as explained in Figure |2} and obtain a new Kakutani-Rokhlin partition D(i,7) for 1 <i < K, 1 <j < J;,
where K = [C|, and .J;, = J; whenever D(k,0) C D(i,0).

We claim that this finer Kakutani—Rokhlin partition D(i,7) refines P. Indeed, take any level D(i, ).
By construction there are integers k and p such that D(i,j) C ~(p,j) N Py and therefore D(i,7) C P,. O

We now give a formal definition.

Definition 1.17. By a Kakutani—Rokhlin partition we shall mean a family of sets D(i,j) satisfying all
the items of Proposition [[.16] (for the trivial partition P = {X} if no other partition is specified). We
use the Greek capital letter chi = to denote Kakutani-Rokhlin partitions. A tower of = is the family
{D(i,5) | 0 < j < J; } for some fixed i. The ith tower will be denoted by T; and T (Z) will denote the set
of all towers. There are K towers in E. The height of the tower T; is the integer J; = |T;|. The set D(i,0)
is said to be the base of the tower T; and ¢”~1(D(i,0)) = D(i,J; — 1) is the top of T;. The union D of all

D(i,0) is said to be the base of = (see Figure [4)).

Tower T
¢°(D2) ¢°(Ds)
¢*(Dy)
¢*(D1)
¢(Ds)
D, D, D3 Dy Ds
B f the partition = Base of T}

FIGURE 4. Elements of a Kakutani—Rokhlin partition.






LECTURE 2

Invariant measures

The set M(X) of countably additive Borel probability measures on X is separable, compact and metriz-
able in the weak-* topology, when viewed as a closed subset of the unit ball of the space (C(X))* — the
dual to the space of continuous functions on X. The topology is given by the basis of neighbourhoods

U(u;fl,...7fn,e)={ueM(X) : ’/fidu—/fidu

<ef01"i<n}7

where f; € C(X) are continuous real-valued functions on X. To generate the topology it is enough to take
for f; characteristic functions of clopen sets.
With a homeomorphism ¢ € Homeo(X) we associate the closed subspace of invariant measures M(¢)

M(¢) = {peM(X) |[p=dou},
where (¢ o p)(A) = p(¢~'(A)). According to the Krylov-Bogoliubov Theorem this set is never empty.
Theorem 2.1 (Krylov—Bogoliubov). For any ¢ € Homeo(X) the set M(¢) is non-empty.

Proor. Pick an z € X and let §, be the Dirac measure concentrated at xz. Set

1n71 )
,Ufn:ﬁ;(ﬁ 0 Jg.

Note that ¢ 0 0, = d¢(z). Since p,, € M(X) and since M(X) is compact, there is a subsequence (n) and a
measure v € M(X) such that u,, — v. We claim that v € M(¢). Indeed, for any f € C(X)

nEg—1
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and therefore

2
[ o) = [ fdun| < 2l
N
This implies that ¢ o p,,, — v, but also ¢ o p,, — ¢ o v, whence pov = v. O

Proposition 2.2. Let ¢ € Homeo(X) be a minimal homeomorphism. For any non-empty clopen A C X the
infimum inf{ u(A) | p € M(¢) } > 0 is strictly positive.

PRrROOF. Let ¢ = inf{ u(A) | p € M(¢)}. If ¢ = 0, then we can find a sequence p, € M(¢) such
that p,(A) < 1/n. By compactness of M(¢) there is a measure u € M(¢) such that u(A) = 0, and thus
w(X) = p(U,ez ¢'(A)) = 0, which is impossible. O

Theorem 2.3 (Glasner—Weiss [GW95|, Lemma 2.5). Let ¢ € Homeo(X) be a minimal homeomorphism
and A, B C X be clopen subsets such that u(B) < u(A) for all p € M(p). There exists an element g € []
such that g(B) C A. Moreover one can find such a g € [¢] that also satisfies g*> = id and g|(pug(p)) = id.

9
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ProOOF. Without loss of generality we may assume that AN B = @. Put f = 14 — 15, and note that
J fdu >0 for any € M(¢). We claim that there is ¢ > 0 such that

inf du > c¢ > 0.
ueMtﬁ)/f H

To see this we let
€ = 1/2~/fdu.

The family of neighbourhoods { U (; f,€,) | 1 € M(9) } covers M(¢). By compactness there is a finite family
K1, -, pp such that M(¢) = U, U(wi; f, €u,). One can now set ¢ = 1/2 - min{ €, | i <n}.
The next step is to show that there must be an Ny > 0 such that for all z € X and all N > Ny

W <+ Z

If this isn’t so, then there is an increasing sequence ny, of natural numbers and a sequence of points xj € X
such that

nkl

— Z (¢ (an)) € [-1,¢).

As in the proof of the Krylov—Bogoliubov Theorem we set pur = 1 Z"’” Yoo 0z,, and after passing to a
subsequence we may assume that pp — v € M(¢), hence

/fdy<c

contradicting the choice of c.

ec BB
9
/—\

FI1GURE 5. Construction of g.

We fix an Ny > 0 such that holds, and find a non-empty clopen D C B such that ¢*(D)N D = & for
all ¢ < Ny. The inequality

=
< N Z f (W (37))
i=0
implies that each column in the Kakutani—-Rokhlin stack over D has more elements in A, than in B and we
define g in a natural way (see Figure [5)). a

Theorem 2.4 (Glasner—Weiss |GW95|, Proposition 2.6). Let ¢ € Homeo(X) be a minimal homeomorphism,
and A,B C X be clopen sets such that u(A) = u(B) for all p € M(¢). There exists g € [¢] such that
g(A) = B, ¢*> = id, and gl~(aupy = id. Moreover, g can be chosen such that the corresponding cocycle ng
has at most two points of discontinuity.

ProoFr. Without loss of generality we may assume that AN B = @. Pick an g € A and ng such that
Yo = 9™ (zp) € B. We fix a complete metric d on X. Find A; — a clopen neighbourhood of z( of diameter
< 1 and such that A] = A\ A; satisfies

p(A)/2 < p(A}) < u(A)  Vp e M(¢).
Next we choose a clopen V; C B a neighbourhood of yg such that
p(AY) < p(B\ Vi) <u(B)  Vu € M(g).

By Theoremwe can find an element g1 € [¢] with g1(A}) = B} C B\ V1, g1(B}) = A} and g1]~(ajup;) =
id. We set By = B\ Bj; note that u(By) = p(Ap) for all p € M(¢).
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° 1 : * Yo

A

FI1GURE 6. Construction of g;

We can now repeat the process in the opposite direction: pick Bs a clopen neighbourhood of 39 such
that By = By \ Bs satisfies
1(B1)/2 < w(By) < p(B1) Vi€ M(¢),
choose V5 C A; a clopen neighbourhood of xy such that
u(By) < p(Ar\ Vo) < (A1) Vi€ M(9),

and by Theorem choose a g € [¢] such that go(B}) = Ab, g2(AL) = B and go is trivial on the
complement of A, U B). Set Ay = A\ AL; note that u(Bs) = As for all u € M(¢). Continuing in this fashion
we obtain a decomposition of the space

x=(x\(auB)u (U)o (UBL) U teo s},

and define g € [¢] by

x ifxe X\ (AUB),
Yo if z = Zo,
o if x = yo.
The cocycle ny, may have discontinuities at points xg and yo only. O

Exercise 2.5. Let A4,..., A, be disjoint clopen subsets of X such that p(A;) = p(A;) for all p € M(¢) and
let o be a permutation of {1 .,n}. Show that there exists h € [¢] such that h(A;) = Ay for all i < n.






LECTURE 3

Spatial realization

Let for brevity I' denote the topological full group [¢] of a minimal homeomorphism.

Proposition 3.1. For every non-empty clopen A C X, every x € A, and every n > 0 there is an h € T’
such that supp(h) C A, x € supp(h) and h|suppn) has period n.

PROOF. By the minimality of ¢ we can find 0 = kg < k; < ... < k,_; such that ¢* (z) € A. Let U be
a sufficiently small neighbourhood of z such that ¢*:(U) N ¢*i(U) = @ for i # j, and set

h|¢k1 ) _ ¢k}i+1—7€i| for i < n and h|¢kn71(U) — ¢_ > ki|¢kn71(U)' O

oFi )’
For a clopen subset A define
Fa={geT[supp(g) CA}.

Note that I'4 is a subgroup of T.
For a subset F C T, the centralizer of F is denoted by F’ and is defined to be the set of elements in T’
that commute with all elements from F:

F'={geT|VfeFgf=fg}
Note that F C F" and (Fy U Fy)' = F| N F}.

Lemma 3.2. Let Aq,..., A, be clopen subsets of X.
(’L) IfFAl = FA2, then A1 = A2.
.. /
(Z’L) (FAl U--- UFAQ) = FNUAi'
(ZZZ) Fa,NTa, =T4,n4,-
PROOF. We show the contrapositive. Suppose that 4; \ Ay # @. By Proposition one can find an
involution g € T such that supp(g) C A4; \ Az, and therefore g € T4, \ T'4,.
I
Suppose g € (FAI U... UFAn) and assume towards a contradiction that g  I' . 4,, i.e., there are

i <nand B C A; such that g(B) N B = @. We can find an h € I'4, such that supp(h) C B and C C B is
such that h(C) N C = @. Therefore gh(C) # hg(C) = g(C). Hence g ¢ T, , which is a contradiction. The
other inclusion is obvious.

The equality follows immediately from the definitions. O

Let 7 € T be an involutions: 72 = id. Note that the support supp(n) is a clopen subset of X. We
construct the following subsets of I':

Cﬂ.:{gel—‘ |g71':7-rg }7
Ur = {g€Cr | ¢>=id, and g(hgh™") = (hgh™")g for all h € Cy; },
Ve ={g€Tl | gh=hgforal helU, 1,
Sz ={4? | g€ Vy 1
Wr={gel | gh=hgforalhec S, .

Lemma 3.3 (Bezuglyi-Medynets [BMOS8|, Lemma 5.10). Wy = I'gupp(x)-

PrOOF. We prove a series of claims each clarifying some properties of the sets constructed above. The
proof of the lemma will then follow from these claims.

(1) g(supp(m)) = supp(n) for all g € C;.

It is easy to verify that supp(gmg~!) = g(supp(r)). Since grg—?

=, we get g(supp(m)) C supp(m).

13



14 3. SPATIAL REALIZATION

(2-i) supp(g) C supp(m) for all g € U,. Suppose this is false and there are a clopen A C ~supp(n) such
that g(A) N A = @. By Proposition we can find an A € T" with support in A such that for some V C A
one has hi(V)NV = @& for i = 1,2. Note that h € Cy, but
glhgh™1)(V) = g*h= (V)
(hgh=")g(V) = hg*(V) = W(V).
Since h= (V) # h(V), we get g € Us.
(2-ii) If a clopen set A is m-invariant, then 74 € U,.
Obviously 7% = 1. Since for x € A we have Toms(z) = mon(z) =2 = w4 o (z), and for x € ~ A we have
moma(x) =m(x) =ma om(x), it follows that m4 € C. Finally one checks that
x ifee(~ANnh(~A)U(ANh(A)),
m(z) fze(~ANh(A)U(ANIK(~A)).

I
>
L
—
<
:—/

WA(hﬂAhil)(I) = (hmah ™ Hra(z) =

(3-1) VpCCh.
For this we show that 7 € U,. Indeed 7 € Cy, 72 = id, and w(hwh~!) =id = (hrh~!)7 for all h € C,.
(3-ii) If g € Vg, then g(B) C BUn(B) for all B C supp(w). Suppose this is false and let B be such that
g(B) £ BUn(B). Set By = BUn(B), and C = g(By) \ By. Note that 7(By) = By and C # &. By (3-i) we
know that wg(By) = gnp, = g(Bo) and therefore

m(C) = 7(gp, \ Bo) = mg(Bo) \ m(Bo) = gp, \ Bo = C.

Using (1) and (3-1) we see that g(supp(w)) = supp(w). Since B C supp(n), this implies By C supp(w). We
therefore can write C' = C U Cs such that 7(Cy) = Cs. Note that by construction ¢g(C) N C = &. By (2-ii)
we € Uy, but also

mcg(C1) = g(C1) # 9(C2) = gma(Ch).
Whence g € V.
(3-iii) If g € Vg, then g?(B) = B for any clopen B C supp(r).
Suppose there is B C supp(w) such that g?(B) # B. By shrinking B we may assume that
g(B)NB =2 =g¢*(B)NB.
By (3-ii) g(B) € BUn(B) and
9*(B) C g(B) U gn(B) = g(B) Ung(B).
But since g(B) N B = @, we conclude g(B) C 7(B) and ¢?(B) C ng(B) C n*(B) = B. Note that
w(B\ g*(B)) = 0 for all u € M(¢). Therefore the minimality of ¢ implies B\ ¢*(B) = @.
(4-1) If g € Sy, then supp(g) C ~ supp(n).
Follows immediately from (3-iii).

(4-ii) For any clopen C C ~ supp(w) there is an involution h € S, supported on C.

By Proposition there exists a periodic homeomorphism g of order 4 with support in C. By (2-i) g € V,
and therefore g° € S;.

(5) Wr = Fsupp(ﬂ')-

It follows from (4-i) that T'gppr) € Wr. If g € Wi and for some B C ~supp(w) we have g(B) N B = &,
then take by (4-ii) any involution h € S, supported on B, let C' be such that h(C)NC = &. It now follows
that hg(C) = g(C) # gh(C). Hence gh # hg, contradicting the choice of g. a

Lemma 3.4. Ifmy,...,m, €I and p1,...,pm €T are involutions, then |J, supp(m;) = Uj supp(p;) if and
only if (Wr, U... U Wﬂn)/ = (W, U...U me)/.

PrROOF. Follows from Lemma [3.3] and Lemma 3.2 |

Theorem 3.5 (Stone). Homeomorphisms of the Cantor space X are in one-to-one correspondence with the
automorphisms of the Boolean algebra CO(X) of clopen subsets of X. In other words any automorphisms &

of CO(X) has a unique realization ¢ € Homeo(X) such that (A) = &(A) for all clopen A C X.

Exercise 3.6. Prove Stone’s Theorem.
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Theorem 3.7 (Giordano—Putnam-Skau |[GPS99|, Theorem 4.2). Let ¢; and ¢2 be minimal homeomor-
phisms, and let Tt = [¢1], T2 = [¢2]. If a: T — T2 is a group isomorphism, then « is necessarily spatial:
there is a homeomorphism A : X — X such that a(g) = AgA~—! for all g € TL.

PrROOF. By Stone’s Theorem it is enough to define A on the clopen subsets of X. By Proposition [3.1
for any clopen A C X we can find a finite family of involutions 1y, ..., m, € I'! such that |J, supp(m;) = ~ A.
By Lemma there exists a clopen subset A(A) such that

(WOé(Trl) U... U Wa(ﬂn))/ - Fi(A)

By Lemma [3.4] the map A — A(A) is well-defined.

We claim that A is an automorphism of the boolean algebra of clopen subsets of X. First of all we
show that A(A; N Ag) = A(A1) NA(Ag). If mp,...,m, € Tt and p1,...,py € TF are involutions such that
~ Ay = J; supp(m;) and ~ Ay = |J, supp(p;), then

~(A1NAg) = (~ AU (~Ag) = (U Supp(wi)) U (U supp(pj))
i J
and hence ) )
Iiainas) = Wagm) U= UWar,) UWaipy) - Wagp,))

= Wagr) U UWam) 0 (Wage) - Waio,)

_ 12 2 _ 2
= T MR,y = Taganacas)-
It now follows that A(A; N As) = A(A1) N A(Ag).
The next step is to show that A(~ A) = ~A(A). Let 7rq,...,7, € It and py,..., pm € I'! be involutions
such that ~ A = {J; supp(m;) and A = J; supp(p;). Since (TY) =TL 4, we get
(Wry U--- U Wfrn)” = (Wpl U---u me)/
and therefore also
(Wa(m) U---u Wa(m))“ = (Wa(m) U---u Wa(pm))/a
which implies
li
DRty = (Wagon U UWagp,)

= (Wam) U UWagr,)”

= (F?\(A))/: FQN A(A)>
and therefore A(~A) = ~A(A).
Since @ = supp(id), we see that A(X) = X and A(®@) = @. And we have proved that A is an
endomorphism of CO(X). It is easy to see that A is bijective, since its inverse is defined by: if B is clopen
and 71, ..., m, € I'? are such that ~ B = J, supp(;), then A~!(B) is defined to be such that

I‘}\—1(1'3) = (Wa—l(m) U---u W(’t—l(ﬂl))/'

So A is an automorphism of CO(X).
Claim. If m € T is an involution, then A(supp(r)) = supp(a(r)). Indeed

~ A(supp(r)) = A(~supp(r)) = ~supp(a()),
whence A(supp(n)) = supp(a(n)).

We finally show that for any clopen set B we have a(g)(B) = AgA~!(B). Suppose this is not the case.
Let V be a non-empty clopen set such that V N a(g~!)AgA=*(V) = @. Pick an involution 7 € I'> such
that supp(7) C V. Note that by the claim a~!(n) is supported by A=*(V), and therefore ga=!(7)g~! is
supported by gA~!(m). This implies a(ga!(m)g) = a(g)ra(g~) is supported by AgA=*(V). But on the
other hand a(g)ma(g™?) is supported by a(g)(V). This shows that a(g)V N AgA=*(V) # @, contradicting
the choice of V. |






LECTURE 4

Boyle’s Theorem and Flip conjugacy

Definition 4.1. We say that two homeomorphisms ¢,% € Homeo(X) are flip conjugated if there is an
a € Homeo(X) such that either ¢ = atba=! or ¢~ = arpa~!. This is an equivalence relation.

Theorem 4.2 (Boyle-Tomiyama [BT98]). Let ¢ and 1 be minimal homeomorphisms. If o € Homeo(X) is
such that

[¢] 2 g aga™" € [¥]
is an isomorphism, then ¢ and v are flip conjugated.
PROOF. By switching from ¢ to agpa~! we may assume that o = id and that [¢] = [¢]. Let n: X — Z
be the cocycle 1(x) = ¢™*)(z), and define
—(n(=Hz)) + - +n(@k())) for k<0,
flk,2) =40 for k=0,
n(x) + - +n(*1(x)) for k > 0.
This function satisfies 1*(2) = ¢/ **)(z) for all k € Z and the following cocycle identity:
flk+1a) = f(kv'(2) + f(L@).
Fix an N such that |n(z)| < N for all z € X. The cocycle identity implies
and also
[F (k0 (@) = f(k,2)| < |F(k+1,2) = f(k,2)| + |F(=1,9())] < 2N.

From 9*(z) = ¢/ %) () we see that the map k — f(k,xo) is a bijection for any fixed zo € X, and therefore
for any zo € X there is an N > 0 such that

[_NvN] - {f(k’,l‘o) ‘ ke [_N7N] }
By continuity of the cocycle n, the function f is locally constant, hence for any x( there is a neighbourhood

Uz, of zo such that
[_N7N] < {f(kay) ’ ke [_N’N]}
holds for all y € U,,. By compactness we can take N to be large enough to work for all z € X.
Note that f(N,z) # 0 for all x € X. Moreover f(N,z) > 0 if and only if f(n,2z) > 0 and f(—n,z) <0
for all n > N. Similarly, f(V,z) < 0 if and ouly if f(n,z) < 0 and f(—n,z) > 0 for all n > N. We define

sets
A={zeX|f(N,z) >0},

B={zeX|f(Nx)<0).

These sets are clopen, ¥-invariant, and X = A L B. Therefore either A = @, or B = @. By taking ¢! for
1) we may assume without loss of generality that A = X. Define a function ¢ : X — N as follows.

c(sv):#[—NN o0) N { f(i,2) [i<0}

NN, 00) N { f(i —1,9(x)) +n(x) [ i <0}
NN,00) N { f(i,3(x)) +n(z)|i<0} -1
#[-NN —n(z),00) N { f(i,(x)) [i <O} — 1
#[-NN,00) N { f(i,¢(x)) | i <O} +n(x) -1
c(i(@)) + nl(w) - 1.

17
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18 4. BOYLE’S THEOREM AND FLIP CONJUGACY

Therefore 1 4 ¢(z) = c¢(¢p(x)) + n(z).
Finally we define g(z) = ¢°®*)z. Note that
dg(x) = ¢! Ty = gD (g) = gDy (2) = g ().
This implies ¢¥g = gy* for all k, and hence g is surjective. Also if g(x) = gi*(x), then ¢Fg(x) = g(x), hence
Orbg(g(x)) is finite, which is impossible. This shows that g is bijective. Since c is continuous, g is in fact a
homeomorphism of X such that ¢ = giypg—!. O

Combining Theorem [3.7] and Theorem [.2] we get

Theorem 4.3 (Giordano-Putnam-Skau |[GPS99|, Corollary 4.4). Two minimal homeomorphisms have
isomorphic full groups if and only if they are flip conjugated.



LECTURE 5

Simplicity of commutator subgroups

Recall that for a group T its commutator subgroup is the subgroup D(I") generated by all the elements of
the form [g, h] = ghg~'h~!. In this section we shall prove that the commutator subgroup of the topological
full group of a minimal homeomorphism is simple. In our exposition we follow Section 3 of |[BMOS|.

Lemma 5.1 (Bezuglyi-Medynets [BMO8|, Lemma 3.2). Let ¢ € Homeo(X) be a minimal homeomorphism.
For any g € [¢] and § > 0 there exist g1,...,gm € [¢] such that g = g1 -+ gm and p(supp(g;)) < 6 for all
€ M(¢).

PROOF. Let g € [¢] be given and suppose first that g is periodic. Since g is an element of the topological
full group, by Propositions and we can find non-empty clopen sets { Ay }rer, where I C Z is finite
such that the space X decomposes into disjoint clopen sets

k—1
X=]|]dAn,

kel =0

and ¢F(x) = x for all z € Ay.
We now can decompose each Ay into non-empty clopen subsets

ng
Ay =] BV
j=1

such that for each k and each 1 < j < ng we have ,u(B](-k)) < 0/k for all p € M(¢). We set

k—1
i ok
Crg = | 9'(B]")
i=0
and grj = glc,, ;- It is easy to see that all the elements g ; € [¢], and g =[], ; gk.;-
We have proved the lemma for periodic homeomorphisms. We consider the case of a non-periodic g € [4].
Fix k € N such that 1/k < § and put

X>i = {z € X | Orby(x) has at least k elements }.

Since g € [¢], by Proposition the set X> is clopen.

For any z € X5 we can find a clopen neighbourhood U, such that ¢"(U,)NU, = @ forall 1 <i < k. By
compactness of X>; we can find finitely many z;,...,z, € X>j such that X> is covered by Uy,,...,U,
We now set By = Uy, and

n

k1
Biyn =B U <Uzl+1 \ U gi(Bl)>-

i=—k+1
Set B = B,,. Note that B is a maximal k-discrete set; in particular, the set B meets every orbit of g in X>p,
and ¢'(B) N B = @ for all 1 <i < k. This shows that u(B) < 1/k < § for all u € M(¢). Define

g*(z) ifz € Band k=min{l>1]|g'(x) € B},
g98(z) = .
T ifx & B.

It is easy to see that gp € [¢], pu(supp(gg)) < § and gz' o g is periodic. The lemma is proved by appealing
to the earlier case of a periodic g. O

19
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Lemma 5.2 (Bezuglyi-Medynets [BMOS8|, Lemma 3.3). Let H be a normal subgroup of a group G. If
gi,--,9n € G and hi,...,hy, € G are such that [g;,h;] belong to H for any i,j, then the element
[91 " gn,h1 -+ hy] also belongs to H. Moreover, the following identity holds:

1 m

(g1 Gn, By hom] = H Hgl"'gp—lhl"‘hq—l[gpvhq]h;_ll"'hflg;_ll"'gl_l.

p=nqg=1
PROOF. It is straightforward to check that

(9192, hi) = g1[g2, hilgy g1, hil,
(97, baha] = [g;, ha]ha[g;, halhy .

The general form now follows by induction from these identities. |

Lemma 5.3 (Bezuglyi-Medynets [BMOS8|, Lemma 3.2). Let ¢ € Homeo(X) be a minimal homeomorphism.
For any f € D([¢]) and § > 0 there exist g1, ...,9N € [¢], Ry, ..., by € [¢] such that f = [g],hi] - (9N, P'N]

and p(supp(g;) Usupp(h})) < & for all p € M().

ProOF. Since D([¢]) is generated by commutators [g, h], it is enough to prove the lemma for elements
of the form [g, h]. Fix a § > 0 and using Lemma [5.1] we can find g1,...,9, € [¢] and hq,...,hy, € [¢] such
that g = g1 -+ gn, h = h1 --- hyy, and supp(g;) < 6/2, supp(h;) < §/2. By Lemmawe know that

1 m
[91 e Gnyhie hm] - H Hgl e 'gp—lhl o ’hq—l[gpahq]h;jl ’ "hflg;jl a '91_1'

p=ng=1

Note that supp([g;, h;]) C supp(g;) Usupp(h;) and therefore p(supp([gi, h;])) < é. Finally since any f € [¢]
is p-preserving for all u € M(¢), and since supp(faf—1) = f(supp(a)), we see that

supp(g1 -+~ gp—1h1 - hg-1(gp, halhy Ly -+ by tgy g t) <6,
and also g1 -+ gp—1h1 -+ hg—1[gp, hq]hq__l1 e hl_lgp__l1 gt € D([¢]), because D([¢]) is normal in [¢]. O

Lemma 5.4. Let ¢ € Homeo(X) be a minimal homeomorphism. If A and B are clopen subsets of X such
that 2u(B) < p(A) for all p € M(¢), then there exists an o € D([¢]) such that a(B) C A.

PRrROOF. By setting « to be id on A N B we may assume that AN B = &. Applying Theorem we
can find ap and ag in [¢] such that a;(B) € A and as(ay(B)) € A\ ai(B). Set @ = ajas. Therefore
a(B) = a1 (B) C A. Since ay = aaj'a™!, we get that a = ajas = [ay,q]. O

Theorem 5.5 (Bezuglyi-Medynets [BMO8|, Theorem 3.4). Let ¢ € Homeo(X) be a minimal homeomor-
phism. Let T be either D([#]) or [#]. If H is a non-trivial normal subgroup of T, then D(T") C H.

PrOOF. We show that for all g,h € T their commutator [g, h] is in H. Pick any non-trivial element
f € H and a non-empty clopen set E such that f(E)NE = &. By compactness of the set M(¢) we see that
26 =inf{ u(E) | u € M(¢)} > 0.

Using Lemma [5.1] and Lemma [5.3] we may find elements g;,h; € I' such that g = g1 -+~ gn, h = hy---
and p(supp(gi)) < 6/2, pu(supp(hy;)) < 6/2 for all p € M(¢). In the view of Lemma [5.2) the proof would be
over if we could show that for all g,h € T such that u(supp(g) Usupp(h)) < ¢ for all u € M(¢) we have
l9:h] € H.

Put F = supp(g) U supp(h) and find by Lemma an element a € D([¢]) such that a(F) C E. By
normality ¢ = o~ fa € H. Therefore h = [h,q] = hgh~'q™! € H, and [g,iz] € H. Since q(F)NF = &, the
elements g~ and ¢gh~'¢~! commute. Whence

l9.h] = g(hgh™ g™ )g~ (ghqg *h™') = ghg~'qh ‘¢ *qhg *h~' = [g,h] € H.
And so D(T') < H. O

Corollary 5.6 (Matui [Mat06|, Theorem 4.9). If ¢ € Homeo(X) is minimal, then D(D([¢])) = D([¢])
and D([P]) is simple.
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PROOF. Since D(D([¢])) is a normal subgroup of [¢], we may apply Theorem [5.5 with H = D(D([¢]))
and T" = [¢]. This shows that D([¢]) < D(D([¢])), and therefore D(D([¢])) = D([¢])-

To show the simplicity of D([¢]) let H be any non-trivial normal subgroup of D([¢]). By another
application of Theorem [5.5| we obtain D(D([¢])) < H, and therefore D([¢]) = H. O






LECTURE 6

Finite generation of commutator subgroups

Let ¢ € Homeo(X) be a minimal homeomorphism and let U be a clopen subset of X such that ¢—1(U),
U, and ¢(U) are pairwise disjoint. We define vy to be the homeomorphism

o(x) ifzep ' (U)UU,
ywiz) =1 ¢ 2(x) ifxeop),
x otherwise.
Lemma 6.1. Elements vy are in the commutator subgroup D([#]).
PROOF. Define an involution g € [¢] by

_Jolae) itz e (V)
g(x){qb_l(x) ifzreU.

FIGURE 7. Homeomorphisms vy, g, and fyUg_l'yal showing vy = [g, Yu].

The equality vp = [g, yu] corresponds to the following identity within the symmetric group on three elements:
(01)(012)(01)(021) = (012) O

Let H = (yy) be the subgroup of [¢], where U ranges over clopen subsets such that ¢~ (U), U, and ¢(U)
are pairwise disjoint. We shall show that H is a normal subgroup of D([¢]), and conclude using Corollary

0] that H = D([6))
Lemma 6.2. If g € [¢] has order 3, then g € H.

PROOF. Let g € [¢] be an element of order 3. By Propositions andwe can find a clopen subset
A C X such that A, g(A), and g?(A) are pairwise disjoint, and supp(g) = A U g(A) U g?(A). Since g € [¢],
we can find a partition By, ..., By, of X and integers r; such that g|p, = ¢"|p,. Let Py, P1, and Pa be
partitions of A defined by

Po={BiNA}i<m,
Pr =g {BiNg(A)}i<m,

P2 =g 2{BiNg*(A)}i<m-
The common refinement of partitions P; is a partition Ay,..., A, of A such that for any ¢ < n there are
integers k; and I; such that gla, = ¢*|a,, glgay) = Pl 94 9lg2(a) = p Rl g2(A;)- Let g; be the
restriction of g onto A; U g(A;) U g?(A;). Elements g; commute and g = g1 -+ - gp.-

It is therefore enough to prove the lemma for elements g € [¢], g> = id, for which there is a clopen
set A and two integers k,l such that A, g(A), and g?>(A) partition the support of g, and gla = ¢"|4,
glgay = ¢l|g(A). Fix such a ¢g. For any « € A there is a clopen neighbourhood z € U C A such that
PU)NYU) =@ forall 0 < i,5 < k41, i+# j. By compactness, we may find a finite family of these

23
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neighbourhoods Uj, j < N, that covers all of A. Let C1,...,C, be the partition of A generated by U;. Let
gi be the restriction of g onto the set C; U g(C;) U g*(C;). Elements g; commute and g = gy - - - gp.

It is therefore enough to prove the lemma for elements g € [¢], > = id, for which there is a clopen set A
and two integers k,l such that A, g(A), and g?(A) partition the support of g, gla = ¢*|a, glgcay = gbl\g(A),
and ¢*(A) N ¢?(A) = @ for all 0 < i,5 < k+1, i # I. Such an element can naturally be regarded as an
element in Syy;41 and 74 (4 corresponds to a cyclic permutation (7 —1 7 i+ 1), which generate the alternate
subgroup Agi;+1 < Skri+1- It remains to note that since g has an odd order, its signature is 0, whence
g € Ak+l+1~ O

Exercise 6.3. Prove that for any n > 3 the group 4, < S, is generated by elements (i — 1 ¢ i + 1) for
2<1<n.

Lemma 6.4. The subgroup H < D([¢#]) is normal. Since D([¢]) is simple, it follows that H = D([¢]).

PROOF. It is enough to show that for vy € H, and any f € D([¢]) (or even f € [#]), we have
fyof~t € H. Since fyy f~! has order 3, this follows from Lemma O

If U C X is clopen and ¢=2(U), ¢~ 1(U), U, ¢(U), and ¢>(U) are pairwise disjoint, we set 7y =
Yo=1(U)TVp(U)-

A/// - ~ e
S S S S
TU

\—/

FIGURE 8. Homeomorphism 7y = vg-1(0)Yg(v)-

Lemma 6.5. Let U and V be clopen subsets of X.
(i) If o=2(V), o= 1(V), V, ¢(V), and ¢*(V) are pairwise disjoint and U C V, then TV'yUT‘;l = Ypv) and
T‘;l’yUTV =vs-1(v); see Figure|9

: — v o(V) : (V)
OINICD H— ()
d2(V) o~H(V) 1% V()

FIGURE 9. TV'yUTJl = YpU)-

(ii) If =2 (U), U, p(U) U ¢~ (V), V, and ¢(V) are pairwise disjoint, then [’yv,'yljl] = Yo(U)ne-1(V); See
Figure 10,
PROOF. We may write 7y = TyTy\v, and using that the support of 7\ is disjoint from supports
of other homeomorphisms, we get
vty =TuwTg = Vo(U)>
where the last identity is a consequence of the following identity on permutations

(01234)(123)(04321) = (012).

Equality T;lfYUTV = Y¢-1(v) 18 checked similarly.
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FIGURE 10. [fyv,fnjl} = Yp(U)Ng—1(V)-

Let C = ¢(U)N¢~ 1 (V). We may decompose Yy = Y4-1(0)Yn\s-1(c) and Y = Y0y \e(c)- Using
the disjointness of support argument as in the previous item, one sees that
1 —1 —1 —1
['YVa'YU } = [7¢(C)7’Y¢—1(C)] = T8(C)Vp—1(0) Vo) To—1(C) = bc,
where the last equality is equivalent to

(234)(021)(243)(012) = (123). O

Theorem 6.6 (Matui [Mat06|, Theorem 5.4). Let ¢ € Homeo(X) be minimal. The commutator subgroup
D([¢]) is finitely generated if and only if (X, §) is conjugate to a minimal subshift.

PROOF. = Suppose D([¢]) is finitely generated, and let gi,...,9m € D([¢]) be a finite set of gen-
erators, n; be the corresponding cocycles g;(z) = ¢™(®)(z), and P be the common refinement of parti-
tions {n; '(k)}rez. Let s : PZ — PZ be the shift map. We define a continuous map 7 : X — PZ
by ¢*(z) € w(z)(k). Note that 7 is a factor map from (X,¢) to (7(X),s). Define homeomorphisms
fi € Homeo(n(X)) by fi(2) = s*(2) when 2(0) C n; (k). It is easy to see that f; € [s] and 7g; = fim. Tt
remains to show that 7 is injective.

Suppose z,y € X are distinct and 7(z) = 7(y), pick g € D([#]) such that g(x) # x and g(y) = y. Write
g asg;'---g;'. Since mg; = fim, we get

whence s¥7(z) = n¢¥(x) = 7(z) for some k € Z, contradicting the minimality of s.
<= Suppose (X, ¢) is conjugate to a minimal subshift. Without loss of generality we may assume that

X is a shift invariant closed subset of A%, where A is finite. Moreover, we may assume that z(i) # x(j) for
all x € X and 4, j € Z with |i — j| < 4. We define cylinder sets by

(a—m - a—1apar---an) ={z e X |z(i) =a;, -m<i<n},

for m,n € N, and a; € A. Because of our assumptions, sets ¢=2(U), ¢~*(U), U, ¢*(U) are disjoint for any
cylinder set U. Let H be the subgroup of D([¢]) generated by the finite set of elements

{~w | U= {abc), a,b,ce A}.
We claim that H = D([¢4]), and for this it is enough to show that vy € H for any cylinder set U. From

Yo(ah) = H T(ab): Vo1 ((a)) = H V(ay)
beA beA
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we conclude v4(¢q)) € H and v4-1(¢ay) € H, and therefore also 7(4y. For a cylindrical set
U= {am---aaapar---an) € (ao) =V

an application of Lemma [6.5] implies
-1
0

-1
T{aod VU Tagy = V(U)  Tiao) TUT(ao) = Vo=1(U)»

whence it suffices to show that vy can be generated for every cylinder set U = {(a—, - - - a—1apa1)). The latter
follows by induction from the second item of Lemma with U = ((a—pm - - - apa1)) and V = (a1a2)). O



LECTURE 7

Bratteli diagrams and Vershik maps

1. Bratteli diagrams

Our main reference for this lecture is the work of R. Herman, I. Putnam, and C. Skau [HPS92].

A Bratteli diagram consists of a vertex set V' graded as a disjoint union of non-empty finite sets V =
LI>", Vi, and an edge set E = | |°~ | E,,, where the sets E,, are all non-empty and finite, together with source
maps s : B, — V,_1 and range maps r : E,, — V,, which are both assumed to be surjective. We also require
that Vj consists of a single element Vp = {@}.

An ordered Bratteli diagram is a Bratteli diagram (V| E) together with a partial ordering < on the edge
set E such that e1,es € E are comparable if and only if 7(e;) = r(e2). In other words, an ordered Bratteli
diagram is a Bratteli diagram such that for any vertex all the edges coming into this vertex are linearly
ordered.

Let (V, E, <) be an ordered Bratteli diagram. An edge e € E is said to be minimal (resp. mazimal) if it
is the minimal (resp. the maximal) element of the set r~*(r(e)). The sets of minimal and maximal elements
in E are denoted by FE.;, and Fy,.x respectively.

%) Erin Erax
2
" é
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FiGURE 11. A Bratteli diagram, an ordered Bratteli diagram, Fii,, and Epax.

We recall that a rooted tree is an acyclic connected graph with a distinguished vertex—the root of the
tree.

Proposition 7.1. The graphs (V, Emax) and (V, Enin) are rooted trees with & being their root.

PROOF. Pick a vertex v € V. Let k be such that v € V}, and put v, = v. Since the set r_l(v) is linearly
ordered, there is a unique maximal element e, € r~*(vy); put vg_1; = s(ex). Similarly, there is a unique
ex—1 € Fmax such that r(ex_1) = vi—1. Continuing this argument we construct a sequence e, ..., e; such
that e; € Enax and s(e;) = @. This proves that every vertex v € V' is connected within E,,.x to the root
&, and so (V, Emax) is a connected graph. To show that (V, Enax) is acyclic let eq,...,en € Fnax and

€l,... el € Emax be two simple paths from & to a vertex v € V; note that s(e;) = @ = s(e}) . Since

r n
€; € Fmax, we cannot have r(e;) = r(e;11), therefore we must necessarily have r(e;) = s(e;+1) and therefore
also m = n, r(ey,) = r(e},). But this implies e,, = €,, and therefore inductively e; = e for all . This proves

that (V, Emax) is a tree. The proof for (V) Eyy,) is similar. O

Note that Fpa.x and En;, are trees with finite splitting, and therefore by Konig’s Lemma there are
infinite branches eax in Fax and enin in Ein. Note that it is possible that enin = emax-

Definition 7.2. An ordered Bratteli diagram (V, E, <) is called essentially simple if the trees Fn, and
FE.x have unique infinite branches e, and epayx.

Up to now we used the word “path” in the sense of graph theory. Since Bratteli diagrams are graded,
it will be convenient to modify the notion of path. Let (V, FE) be a Bratteli diagram. A path from a vertex

27
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v € Vi, to a vertex u € Vj, k < [, is a sequence of edges eg41,...,€ such that e; € V;, s(ex11) = v, r(e;) = u
and s(ej41) =r(e;) for all k+ 1 < i < 1. We use P(v,u) to denote the set of all paths between v and u and

P(Vi,V)) = || P(v,u).
vEV)
u€eVy
An infinite path in a Bratteli diagram is a sequence of edges eq, es, ... such that e¢; € E; and r(e;) = s(ej41)-
With any Bratteli diagram B = (V, E) we associate the Bratteli compactum: the space X g of all infinite
paths in B. By definition Xg C HZO=1 FE,, and we endow X g with the induced product topology. This makes
Xp into a compact metrizable zero-dimensional space. Note that Xp is a Cantor space if and only if it has
no isolated points.

2. Vershik maps

Let B = (V, E, <) be an essentially simple Bratteli diagram. The Vershik map ¢p : Xp — Xp is defined
as follows. First of all we define ¢p(€max) = emin. If © € Xp is a non-maximal infinite path, let n be the
smallest such that z(n) € Emax. Let e, > z(n) be the successor of z(n) in v~ (r(z(n))). Let e1,...,en—1
be the path from & to s(e,) within E;,. We set

if m <n,

@uwm={%

x(m) if m>n.

2 1
« ﬁ
FIGURE 12. Vershik map acting on an ordered Bratteli diagram.

Proposition 7.3. Let B = (V,E,<) be an essentially simple ordered Bratteli diagram. The Vershik map
¢ : Xp — Xp is a homeomorphism.

PrOOF. We first show that ¢p is a bijection. Define the map g : Xp — X5 by ¥5(€min) = €max and
for a non-minimal path x we take n to be minimal such that 2(n) € Funin. Let e, < z(n) be the predecessor
of z(n) in r~!(r(x(n))) and let e1,...,e,—1 be the path from @ to s(e,) within Eyax. We set

if m <n,

z(m) if m>n.

wuwmz{%

Is is straightforward to check that ¢ o ¥yp = id = ¥ o ¢, and therefore ¢p is a bijection. Since the
definition of ¢ g is local, it is obviously continuous as a map ¢5 : X5\ {€max} = X5\ {€min}- The continuity
at the point e,y is also straightforward to check. O

Proposition 7.4. Let B = (V, E, <) be an essentially simple Bratteli diagram, and ¢p : Xp — Xp be the
Vershik map. Pick an v € Xp and a natural number M.
(i) There exists ki > 0 such that ¢5"* (2)(i) € Emin for all i < M.
(ii) There exists ky > 0 such that ¢52(2)(i) € Fmax for all i < M.
(iii) With ki and ko defined as above, ¢§k1+j(:c)|M, 0 < j < ko + k1, is an enumeration of all the paths
P(2,r(z(M))).
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PRrOOF. We prove the statement by induction on M. If M = 1, the statement is obvious from the
definition of ¥ p—the inverse of ¢p. For the induction step let z € Xp and M be given. By inductive
hypothesis there is 1 such that ¢—" (2)(i) € Enpi, for all i < M — 1. Therefore ¢~ 71 (2)(i) € Epax for all
i <M —1and ¢~ (z)(M) is the predecessor of z(M). We therefore may continue and find I such that
¢~ 7172 (2)(4) € Epin for all i < M — 1, hence ¢~ ~1=12=1(3)(M) is the predecessor of ¢~ =1 (z)(M), etc.
For some p > 1 and

—ki=-lL-1-l—-1—--- =, 1—-1-1,
we have ¢~*1(z)(i) € Empin for all i < M.
Item is a statement symmetric to item , and is proved similarly by induction on M. ]

Definition 7.5. A Bratteli diagram (V, E) is called simple if for every m there is n > m such that from any
vertex in V,, there is path to any vertex in V,,. An ordered Bratteli diagram B = (V, E, <) is called simple if
it is essentially simple as an ordered diagram, and simple in the above sense as an unordered diagram (V| F).

Note that if B = (V, E) is simple, then X is a Cantor space.

Proposition 7.6. Let B = (V,E, <) be an essentially simple ordered Bratteli diagram. The Vershik map
o : Xp — Xp is minimal if and only if B is simple.

PROOF. Suppose B is simple. In order to prove the minimality of ¢ it is enough to show that for any
x € Xp, any y € Xp, and any M there exists n € Z such that ¢™(z)(i) = y(i) for all ¢ < M. Since the
diagram is assumed to be minimal, we may find an N such that any vertex in V), is connected to any vertex
in Vy. Let v = r(z(N)) and w = r(y(M)). By the choice of N we can find a path from u to v, and hence
we can find some z € Xp (see Figure such that

o) = y(i) ifi<M,
© (i) ifi> N.

By item (iil) of Proposition there is an n € Z such that ¢ (z) = z. Therefore also ¢"(x)(i) = y(i) for
all ¢ < M, hence ¢p is minimal.

FicUure 13. Paths z, y, and z.

For the inverse implication we prove the contrapositive. Suppose B is not simple: there is m such that
for any n > m there are u, € V;, and v, € V,, such that P(u,,v,) is empty. Since V,, is finite, there is
u € Vp,, an increasing sequence ny, and vy € V,,, such that P(u,vy) is empty. Let yr € Xp be such that
T(yk(nk)) = v. By compactness of Xp we may find a converging subsequence; let y € Xp be a limit point
of (yr)ren. Note that P(u,r(y(i))) is empty for all i > m, because if there were a path from u to r(y(io))
for some ig, then we would find a big enough k such that ny > ig, and y would agree with y; up to index i,
hence there would be a path from u to vy contrary to the assumption.

Pick z € Xp such that r(z(m)) = u. Suppose towards the contradiction that ¢p is minimal. Then we
can find k € Z such that ¢%(y)(i) = 2(i) for all i < m. Without loss of generality we may assume that
qb’,g, (y) is tail equivalent to y (this is because by minimality we may find both a negative and a positive such
k € Z) and therefore ¢%(y)(N) = y(N) for all large enough N. This implies P(u,r(y(N))) is non-empty,
contradicting the construction of y. ]






LECTURE 8

Minimal homeomorphisms as Vershik maps

1. Realization of homeomorphisms

Theorem 8.1 (Herman—Putnam—Skau [HPS92], Theorem 4.6). Let ¢ € Homeo(X) be a minimal home-
omorphism and x € X, then there is a simple Bratteli diagram B = (V,E,<) such that (¢,X,x) and
(¢B, XB,emin) are conjugated.

PROOF. Using Proposition [I.16] we can find a sequence of Kakutani-Rokhlin partitions
E, = {DM(i,j)|1<i< K™ 0<j<J™}
with bases D™ = | |. D (4,0) such that
(i) Eo = {X};
i) D"t C D™ for all n;

En+1 refines =;

)
)
('Vg N, D" = {z};

The Bratteli diagram B = (V, E, <) is constructed out of this sequence as follows. Vertices of V,, are
the towers of Z,: V,, = T(E,). For each inclusion D"+ (i, j) ¢ D™ (k,0) we put an edge between Tlgn)
and Ti(nﬂ). Edges are ordered in a natural way: if e; corresponds to an inclusion D"+ (i, j;) ¢ D™ (k,0)
and es to D(”“)(i,jg) C D(")(k, 0), then e; < es whenever j; < jo. Figure gives an instructive example.
Note that B is essentially simple with ey, corresponding to inclusions D™ +1)(i,0) € D™ (4, 0), and epmax
corresponding to inclusions D+ (4, Ji(nﬂ) — J;n)) C D™ (4,0). Indeed, if there were two minimal paths
corresponding to inclusions D™V (3, 1,0) € D™ (i,,0) and D"+ (5,.,1,0) € D™ (j,,0), then we would

have
(D™ (in,0) = {} = () D™ (4, 0),

which is impossible if i,, # j, for some n. Note also that we can always reorder the towers in =,, to assure
that e, corresponds to inclusions D41 (1,0) € D™ (1,0), and epay to D"+ (K(”), JI(:(JFPI) — JI(:(),L>) C
D) (K("+1),0).

Our goal is to show that (¢, X, x) is conjugated to (¢, X5, €min). The conjugation map £ : X — Xp
is defined as follows. Pick an € X and n > 1. Let DY (i,_1,5,_1) and D™ (i,,,) be the elements
of partitions =,_; and Z,, that contain x. Therefore j,_1 < j, and D(”)(in,jn — Jn—1) C D(”’l)(in,l,O)
and we let £(x)(n) to be the edge e that corresponds to this inclusion. In particular, r(e) = Ti(:) and
s(e) = Tl(qz:l) An example is shown in Figure

We claim that for any x € X the initial path of £(z) of length n determines precisely the element
D™ (4, 5) such that z € D™ (4, 5) (see Figure . More formally,

Vi <n&(x)(i) =£&(y)(i) < = and y are in the same atom of =,,.

< is obvious. We prove = by induction on n. For the base of induction we note that Zg = {X} implies
that £(z)(1) are in one-to-one correspondence with elements of =;. Suppose £(z)(i) = &(y)(4) for all i < n.
The edge £(z)(n) corresponds to an inclusion D™ (i,,, k) € D™= (i,_;,0). By inductive assumption = and
y are in the same atom D™~V (i,, 1,5, 1) of D~V therefore 2,y € D" (in, k + jn_1).

From the above claim properties of £ are almost obvious. It is easy to see that £ is continuous and
bijective (injectivity follows from item ), hence ¢ is a homeomorphisms. It is straightforward to check
that o ¢ = ¢ppo&. |
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FI1GURE 14. Construction of a Bratteli diagram out of Kakutani-Rokhlin partitions.

Remark 8.2. Note that given a Bratteli diagram B = (V, E, <) we can reconstruct a sequence of Kakutani—
Rokhlin partitions: for a path p from @ to u € V,, we set

Clp) ={z e Xp|2(i) =p(i) Vi<n}

and =2, = {C(p) | p € P(Vo,V,,) }. Therefore any Vershik map ¢p that realizes a minimal homeomorphism
¢ is constructed as in Theorem (8.1

2. Telescoping diagrams

In view of Remark [8:2]it is natural to ask: When does two simple ordered Bratteli diagrams give rise to
isomorphic Vershik maps? In this section we give a complete answer to this question.

Definition 8.3. Let B = (V, E) be a Bratteli diagram and let (n)ren be an increasing sequence of natural
numbers with ng = 0. A telescope of B with respect to (ny) is a Bratteli diagram B’ = (V/, E') defined by
V), =V,, and E, = P(V,,_,,Va,). More precisely, for each path e, ,+1,...,€n, in B with s(e,, ,+1) =
u € Vo oy, rlen,) =v €V, we have an edge ¢’ € E}, with s'(e’) = v and r'(¢’) = v (see Figure .
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FIGURE 15. A point z € D(1,11) will have an image £(z).
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FIGURE 16. Four levels of a Bratteli diagram B and two levels of B’ with n; = 2 and ns = 4.

If B = (V,E, <) is an ordered Bratteli diagram to begin with, then for any two levels & < [ and
v € V; we have a natural ordering on P(Vj,v): a path exi1,...,e; is less than a path fgi1,..., fi, where
r(e)) =v=r(f;) and s(egt+1), s(fr+1) € Vi, if for the largest &k < m <[ with e,, # f,, we have e,, < fp,.

If now B is an ordered Bratteli diagram and (ny) is an increasing sequence with ng = 0, then the
telescope B’ of B is also an ordered Bratteli diagram, when edges are endowed with this ordering. If B is
essentially simple, then so is B'.

An increasing sequence of integers (ny) with ng = 0 will be called a telescoping sequence.

Proposition 8.4. Let B be an essentially simple Bratteli diagram and (ny) be a telescoping sequence; let B’
the telescope of B with respect to (ny). Homeomorphisms (Xp, dp,emin) and (Xp/, ¢p, el ..) are conjugated.

PROOF. The conjugation £ : Xp — Xp/ is defined as follows. For z € Xp, &(x)(k) is defined to

be the edge that corresponds to the path z(ng—1 + 1),...,2(ng). It is obvious that £ : Xp — Xp/ is a
homeomorphism, and { o ¢p = ¢p/ 0 €. O

Remark 8.5. In the context of Theorem telescoping of Bratteli diagrams corresponds to taking subse-
quences of Kakutani—-Rokhlin partitions.

Definition 8.6. We say that two ordered Bratteli diagrams B and B’ are equivalent, if there is a sequence
of ordered Bratteli diagrams B, ..., B, such that B; = B, B,, = B’ and for each 1 < i < n one of the three
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possibilities hold: either B; is isomorphic to B;;1, or B;y1 is a telescope of B;, or B; is a telescope of B;1.
In other words, equivalence of ordered Bratteli diagrams is the finest equivalence relations that preserves
isomorphisms and telescoping.

Theorem 8.7 (Herman-Putnam-Skau [HPS92|, Theorem 4.5). Let By and By be simple ordered Bratteli
diagrams. Two Vershik maps ¢1 = ¢p, and p2 = ¢p, are conjugated if and only if B1 and Bs are equivalent.

PRrROOF. « follows from Proposition We show =-. There is no loss in generality to assume that

By and B; are constructed from sequences of Kakutani-Rokhlin partitions Eg) and Eg)

passing to subsequences we may assume that Egllll refines 12 and Ef}rl refines Z5 for each n. We define

=) by

respectively. By

—(3) _ =1 ifnis even;
- = if nis odd.

The sequence 57(13) satisfies all the items in the construction from Theorem and we let B3 be the diagram
obtained from 5513). Since Bj is equivalent to the telescope of By with respect to (2k)ken and also to the

telescope of By with respect to (2k + 1)ken, we see that By and Bs are equivalent. |



LECTURE 9

Invariant means

1. Basic theory

Let G be a discrete group acting on a countable set X. A mean is a linear functional m € £°°(X)* such
that m(f) > 0 for all f > 0, and m(1) = 1. Means are in one-to-one correspondence with finitely additive
probability measures on X. We shall let the context to explain whether we refer to a linear function or to
a finitely additive measure. The set of means on X is denoted by M(X). A mean m € M(X) is said to
be G-invariant if m(g o f) = m(f) for all f € ¢*°(X) and all g € G. Let P(X) be the set of all countably
additive probability measures on X:

P(X) ={nel'(X)|n=0ul =1}
We can naturally view P(X) as a subset of M(X).

Exercise 9.1. If m is a mean on X, then for any f € ¢*°(X)

inf f < m(f) < sup f.

Lemma 9.2. P(X)"" = M(X).

PROOF. Since P(X)"" is a convex closed subsets of £>°(X)*, if my € M(X)\P(X)"", then by separation
theorem we can find f € ¢°°(X) and ¢ > 0 such that mo(f) > ¢+ m(f) for all m € P(X)"”". Since P(X)""
includes all Dirac measures, we obtain

mo(f) > sup{m(f) [m € P(X)"" } = sup{ f(z) | v € X'},

whence mg is not a mean. O

Corollary 9.3. Let m € M(X) be a G-invariant mean. There exists a net ju,, € P(X) such that ju, > m
and g o fin — fin — 0 for all g € G.

Lemma 9.4. Let m € M(X) be a G-invariant mean. There exists a net u, € P(X) such that p, — m

andgo,un—unillﬁOforallgEG.

PRrOOF. Let v, € P(X) be such that v, s mand gov, — v, — 0 for all g € G. For each g € G we
take a copy of £*(X), and form a locally convex topological vector space

E=]]¢X).
geG
We have a map T : /1(X) — E given by T(u)(g) = g o pp — . The weak topology on E coincides with the
product of weak topologies on factors. Since g o v, — v, — 0 for each g € G, zero lies in the weak closure
T(P(X)). Since FE is locally convex and T(P(X)) is convex, the weak and strong closures coincide, hence

there is some net (u,) € P(X) such that T'(u,) — 0 in E, which is equivalent to saying ||g o n, — pin|l1 — 0
for all g € G. O

Definition 9.5. A group G is said to be amenable if the action G ~ G by left multiplication has an invariant
mean.

Fact 9.6 (see, for example, Juschenko-Monod [JM12], Lemma 3.2). If G ~ X has an invariant mean and
if stabilizers of all points are amenable subgroups of G, then G itself is amenable.
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2. Actions on finite subsets

If G acts on a set X, then it also acts on Py(X)—the group of finite subsets of X with symmetric
difference as the group operation. Hence we get an action Py(X) x G ~ Py(X). Fix a point zp € X and let

Sz ={F € Ps(X) | 2o € F}.
For E € Pr(X) let 15 € L*({0,1}¥) be the function defined by
1 ifw(x)=0forall z e E,
0 otherwise.
We write 1, for 1,y If p € P(Py(X)) and E € Py(X), we also write p(E) instead of u({E}).

Lemma 9.7 (Juschenko-Monod [JM12], Lemma 3.1). Suppose that the action G ~ X is transitive. In the
above notations the following conditions are equivalent.

(i) There exists a G-almost invariant net {f,} € L*({0,1}*) such that

an ’ ]lzo‘|2
|| fnll2
(i1) The action Pr(X) x G ~ Pr(X) admits an invariant mean.

(iii) The action G ~ Py(X) admits an invariant mean m such that m(Sy,) = 1/2.
() The action G ~ P¢(X) admits an invariant mean m such that m(Sg,) = 1.

— 1.

Proor. (i) = Let f, be a G-almost invariant net with Wiﬁ’z}”z — 1. Without loss of generality

we may assume that ||f,|[2 = 1. Recall that a Fourier transform f, € ¢2(P;(X)) of f, € L*({0,1}¥) is
given by
B = [fu)(-u.B) i

(0,1}%

where

(w, E) = exp(im Z w(z)).

zEE

Note that every element in {0,1}¥ has order two, therefore (—w, E) = (w, E). The Fourier transform f,,
gives G-almost invariant vectors in ¢£2(Pf(X)), since

||gofn - fn||2 = H(gofn - fn) HQ = Hgofn - anQ
We claim that f, are also {zo}-almost invariant. Since ||f,||2 =1 and

||fn ) 110”2

—1
we get || fn - (L — 1y,)||2 — 0. Therefore
~ ~ . 2
{zo} o fu— full3 = D ] /fn(w)(w,E)(eww(zo) —1) dA’
Eepf(X){O,l}X

—aY| /fn(w)(]l ) (), B) dA |

P onyx
=4 | (- 1) B) |
E

=4|[(fo- (1= 100)) |[3 = 4llfn - (X = Lo)| = 0.
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Thus fn is {xo} almost invariant. Since G acts transitively on X, for any y € X there is ¢ € G such that

gxg =y, hence fn is also {y}-almost invariant. Whence the net fn is actually Py(X) x G-almost invariant.
By the Cauchy—Schwarz inequality

Hgofn2 - fn2H1 = H(gofn - fn)(gofn +fn)||1
<Ilgofu—fullz-llgo fn+ full2
<2|lgo fu— fall2

Thus the net an € P(X) is G-almost invariant, and any of its w*-limit points in M(X) is a G-invariant
mean on X.
(i) = Let m be a Py(X) x G-invariant mean. Since {x¢} - Sz, = ~ Sy, we get
m(Sz) = m({wo} - Szy) = m(~Sz) = 1/2.
S Let m be a G-invariant mean such that m(Sy,) = 1/2. Repeating arguments of Lemmata
and one shows that there exists a net u, € P(P;(X)) such that w, —> m, p,(Sy,) = 1/2, and

[g © tin — fin]] — 0 for all g € G.
Fix k > 1. Let U : P;(X)* — P;(X) be the “union function:”

U(Fl,...,Fk):UFi.

Let u\¥) = U, 1% be the push-forward of 1% to a measure on P (X):
p(A) = MU (A)).

We have
u (Sao) = i (Fr, ... Fy) | Jiag € Fy }

=1—pu*{(Fy,...,Fy) | Viao & F }
=1 — P (~ Sy X o X~ Sy =1—27"

The net u( ) is G-almost invariant, since

lgo ) — Pl = S [uP(9E) - uP(B)|
EcPs(X)

:Zﬂik{(Fh...,Fk)|UF¢=gE}—u,XLk{(F1,...7Fk)]UFZ-:E}‘
= ) Hﬂn i) — Z Hun )|

E (Fp,..., Fp) j=1 (F1,. Fr) j=1
UF;=9E UFFE
k
= Z Z H/J'n gF Z H,Un(Fj)
E (Fp,..., Fr) j=1 (Fpses F) j=1
i=F UF;=E
k k
<> > (|1 ateF) =TT wa(Fy)
E (F1,.., Fr)lj=1 j=1
UF;=E
k
= Z H,un gF H (F])
(Fl» SFR)lj=1 j=1

SZ > 9Py - i (9F 1) |1 (9F5) = pn (Fy) |[pm (Fj1) - - - i (Fe)
j:1 (Fl,.‘ka)

= kllg o ptn — pinll1
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Let my, € M(P¢(X)) be a limit point of the net (Mﬁf)) The mean my, is G-invariant and my(S,,) = 1 —27*.

Zo
Let finally m € M(P;(X)) be any limit point of the sequence my. It is G-invariant and m(S,,) = 1.

(iv) = Let m be a G-invariant mean with m(S,,) = 1. There exists a net p,, € P(Ps(X)) such

that 1, —» m, ||g o pn — pn||1 — 0 for all g € G, and 1,,(S,) = 1. Set
fn = Z,U,n(F)Q‘FI]]_F

FePf (X)
Since ., is supported on Sy, fn + Lz, = fn. The norm ||f,||1 = 1, since

anl\l:/] > Mn(F)QlF‘]lF‘d/\

FePs(X)

_ /an(F)2‘F|]lF dA
F
=S 2Fl (F) [ 1p dX
S |

=> 2l (P2l dx = 1.
F

We claim that ||go fr, — fulli < lg 0 ttn — pin]|1- Indeed,
goJn = Jnll1 = Hn g lF — Hn F
g © fn = full (F)211 (F)21 1y |dA

FGPf(X) FGPf(X)

= / > un(gF)2 g —Zun(Fﬂ‘F'ﬂp\dA
F F

- / S 2F (i (9F) — pin(F)) [

F

< g0 tn = tnl = 1lg 0 ttn — pnll1-
F

Therefore f/? € L2 ({0,1}%) are as required, since

1/2 1/2
g o fa/? = fa/2]]2 = (/IQOfi/Q —fi”!?dk) < (/IQOfn —fn|d)\) —lgo fn— fulli*.

O



LECTURE 10

Amenability of topological full groups

Let ¢ € Homeo(X) be a minimal homeomorphism. Fix some 2 € X. The orbit Orbg(z) can naturally
be identifies with the set of integers Z, where x corresponds to 0 € Z. Via this identification we get an
action of [¢] on Z. In other words, for any z € X we have a homomorphism 7, : [¢] — S(Z), where S(Z)
is the group of permutations of the integers. The images 7,(g) are quite special, since they have bounded
displacement. Let for g € S(Z)

19w = suglg(n) —n| € NU {oo}.
ne

We say that g € S(Z) has bounded displacement if | g |, < co. Such elements form a subgroup of S(Z),
which we denote by W (Z). For any z € X, 7.([¢]) < W(Z).

A subgroup G < S(Z) is said to have ubiquitous pattern property if for every finite set F C G and every
n > 1 there exists k = k(n, F') such that for every j € Z there exists ¢ € Z,

[t—n,t+n] C[j—k,j+k],
and g(i) + ¢t = g(i + t) for every g € F and every ¢ € [—n,n].

Lemma 10.1 (Juschenko-Monod [JM12|, Lemma 4.2). Let ¢ € Homeo(X) be a minimal homeomorphism
and x € X. The group m,([#]) has ubiquitous pattern property.

PROOF. Suppose towards the contradiction that there exists a finite set F' C G and n > 0 such that for
any k > n there exists jj such that for all ¢ with [t — n,t +n] C [jx — k, jk + k] the action of F on [—n,n] is
different from the its action on [t —n,¢+n]. Let P be the common refinement of partitions {n, ' (k)}rez for
g € F. Given y € X and an interval of natural numbers [t — n,t + n] let Q(y, [t — n,t + n]) be the partition
of [-n, n] defined by identifying naturally [—n,n] with {¢"(y)}icpr—n,t+n) and setting

Q(y7 [t —n,t+ n]) =PnN {(bl (y)}ie[tfn,t+n] .
For any t with [t — n,t + n] C [jr — k, jr + k] partitions Q(z,[-n,n]) and Q(z, [t — n,t + n]) are different.
Define sets
The sets M}, are non-empty, closed, and My1 C My, therefore M = [, M}, is a non-empty closed subset of
X. Since ¢(My) C My_1, the set M is ¢-invariant. But « ¢ M, contradicting the minimality of ¢. |

Lemma 10.2 (Juschenko-Monod [JM12|, Lemma 4.1). If G < W(Z) has ubiquitous patter property, then
the stabilizer in G of EAN is locally finite for every E € Py(X).

PROOF. Let E € P;(Z) and F C Stabg(EAN) be finite. Put M = max.cg |e| and N = maxgep | g |w-
Let k = k(M + 2N, F) be from the definition of the ubiquitous pattern property. Let for n € Z

I, =[(2n — 1)k +n,(2n + 1)k + n].
The intervals I,, partition Z. Let Ey = (EAN) N [-M — 2N, M + 2N] and by the choice of k we may find
E, C I, and t, such that E,, = Eq+t, and g(s)+t, = g(s+t,) forall g € F and all s € Ej (see Figure.
We define sets B,, by
B, = E, U ([max(E,) + 1,max(Ey41)] \ Ent1)-
Note that Z = | |, ., Bn, each B, is finite and |B,,| < 4k 42 for all n. We claim that sets B,, are g-invariant
for all g € F. Fix g € F. Since g(EAN) = EAN, we get gEy C EAN, hence max Ey < min(gEy \ Ep) and
therefore also
max E, < min(gF, \ E,) VYn.
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40 10. AMENABILITY OF TOPOLOGICAL FULL GROUPS

FIGURE 17. Construction of intervals I,,, sets E,, and B,,.

In other words, g “sends points from FE,, to the right”. Since [max E,, — | g |, max E,] C E,, it follows that
B,, is g-invariant.

Since cardinalities |B,,| are uniformly bounded by 4k + 2, we can view F' as a subsets of a power of a
finite group, hence F' generates a finite group. (]

Let f, : {0,1}2 — [0, 1] be the following sequence of functions:
falw) = exp(=n > w(j)e /).
JEZ
Fact 10.3 (Juschenko-Monod [JM12|, Theorem 2.1). The sequence f, satisfies conditions of item of
Lemma . Consequently, the action W(Z) ~ Z has an invariant mean.

Theorem 10.4 (Juschenko-Monod [JM12], Theorem A). Topological full groups of Cantor minimal systems
are amenable.

PRrROOF. Let ¢ be a minimal homeomorphism of a Cantor space X. For € X we have an embedding
7 ¢ [¢] = W(Z) and therefore by Fact there is a P¢(Z) x 7, ([¢])-invariant mean on Py(Z). Consider
the homomorphism & : [¢] = P#(Z) x w5 ([¢])

&(9) = (NAT,(9)(N), m2(9)).
The homomorphism £ is injective and for any E € P¢(X)
£(9)(E) = E = m,(g9)(EAN) = EAN.

In other words, the stabilizer of E in £([¢]) is the stabilizer of EAN in 7, ([¢]). Thus the action &([¢]) ~
P¢(Z) has an invariant mean and by Lemma stabilizers of all points are locally finite, hence amenable.
Fact [0.6] finishes the proof. O



APPENDIX A

Topological full groups of Z> actions

We present an example from [EM13] of a Z? minimal action with a non-amenable topological full group.

Let X denote the space of all proper edge-colourings of the grid Z? into six colours {a,b,c,d,e, f}.
Denote by (a) the group with two elements {e,a}. Let (w;);cny be an enumeration of all the elements in
the free product (a) * (b) * (c). Note that this free product contains a non-abelian free subgroup, hence is
non-amenable. We pick a function g : Z — N satisfying the following: for any ¢ € N there is L > 0 such that
any subinterval I C Z of length > L contains n € I with g(n) = 4. For example, we may take

(n) = i |n| =2'm, mis odd,
g = 0 n=0.

We construct an element x € ¥ as follows. For n € Z we take wy(;) and label edges with w;é)“d upward

starting from the zero level (Figure [L8). We continue this labelling periodically and colour horizontal edges
with e and f in a proper way.

ni T2
a a
d d
c c
a a
b b
a a
zero level
d d

FIGURE 18. Construction of x, wy(n,) = Wy(n,) = caba.

Z acts on X by shifting edges. With a letter a we associate a homeomorphism a : ¥ — ¥ defined as
follows. Let y € 3. If there is v € {(0,%1),(£1,0)} such that the edges starting from 0 in the direction of v
is coloured with a, we let a(y) = y + v. Otherwise we set a(y) = y. The homeomorphisms a, b, ¢ are in the
topological full group of the shift. Let M be any minimal subshift of Orbzz(z). The action of (a) * (b) x (c)
on M is faithful, hence the topological full group of the shift on M is non-amenable.
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APPENDIX B
Dimension groups

We start by recalling the definition of the direct system of groups. Let (G,,)nen be a sequence of groups
with homomorphisms &, : G,_1 = G,. For i < n we let

Ein =& o0&y

The direct limit of (G, &,) is the disjoint union | |, G, modulo the equivalence relation z,, € G, z,, € Gp,
T ~ Xy if there is N > m,n such that &,y (z;) = & (x,). Group operations are defined in the obvious
way.

Given a Bratteli diagram B = (V, E) with k, = |V,|, we consider integer valued matrices M,, €
My, xk,_, defined by M, = (my;), m;; = |P(vj,v;)|, where v; € V,_1 and v; € V,. In other words,
m;; is the number of edges between the 5t vertex of V,,_; and the i*" vertex of V,,. For example, given the
portion of Bratteli diagram in Figure the corresponding matrices M,, are

A 20 110
M1:<3>, My=1|1 1], My=]0 1 1
11 101

A matrix M,, naturally defines a homomorphism M,, : ZFr-1 — Z*~ and therefore we have a direct system

of Abelian groups

M M. M: M, M,
7 M gk M2 ks Msg 7kn +1

The direct limit of this system is denoted by K(B). Each Z*» has a positive cone that consists of vectors
with non-negative coordinates. The positive cones are preserved by homomorphisms M,, and the direct limit
of these cones is the positive cone K™ (B) in K(B). The dimension group of the Bratteli diagram B is the
triple (K(B),K'(B), 1), where 1 € K(B) is the element that corresponds to 1 € Z.

With a homeomorphism ¢ € Homeo(X) we associate the group Kg(¢) that is defined to be the quotient
of Abelian groups

Ko(¢) = C(X,2)/9;C(X, Z),

where 94C(X,Z) = {f — fo¢ | f € C(X,Z)}. This group also has a positive cone K{ (¢), which is the
image under the quotient map of the cone of non-negative functions. The dimension group of ¢ is the triple
(Ko(¢), K¢ (¢), 1), where 1 corresponds to the constant one function on X.

Theorem B.1 (Glasner-Weiss [GW95|, Theorem 5.1). Let ¢ € Homeo(X) be minimal. If B = (V, E, <)
is a simple ordered Bratteli diagram such that ¢p is conjugated to ¢, then (K(B),K*(B),1) is isomorphic

to (KO((b)v Ka_(gb), ]]-)

PROOF. Define a map ¢ : C(X,Z) — K(B) as follows: given f € C(X,Z) choose an n such that
V, represents columns of a Kakutani-Rokhlin partition which is compactible with f, i.e., =, is finer than
{f~Y(k)}rez. Note that f is also compatible with all partitions =,,, m > n. We define fm € ZFm by setting
fim (4) to be the sum of values of f over all the levels of the j*® tower 7; in =,,. Since

Fnt1(G) = > (Mini1)j1fm (1) = (M1 Fn) (5),
!
the sequence (f,) defines an element ¢(f) € K(B). The map ¢ is a homomorphism ¢ : C(X,Z) — K(B).
If f=go¢—g for some g € C(X,Z), then fn,(j) =go qﬁ‘];m)(x) — g(x) for some = € D™ (4,0) in the
base of the tower, where J j(m) is the height of the j** tower in Z,,. If m is large enough, g is compatible with
=, and is constant on its base. Since ngJ('m) (x) is in the base, we get ((f) = 0, hence 9,C(X,Z) C ker (.
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44 B. DIMENSION GROUPS

Conversely, if ((f) = 0, there exists m such that ]?m = 0. We show that there is a function g € C(X,Z)
such that f = gog—g. We let g be equal 0 on D™ (5,0) and f(x)+ f(¢p(x))+---+ f(¢' ' (x)) on D™ (4,1),
where z is a point in D™ (j,0). Obviously f = go¢ — g everywhere, except possibly the top of the partition.
For z in the top level the equality follows from g((b‘]](mx) =0 and fm (j) = 0. Whence ¢ : Ko(¢) — K(B) is
a monomorphism.

If d is an element in K(B), choose an m such that d can be represented as an element of Z*» and define
f on the corresponding partition as follows. For z € D) (5,0) set f(x) = d(m,j), and 0 elsewhere. Then
f(j) = d(m, j) and  is onto. It is easy to check that C(Kg(¢)) = KT(B) and ¢(1) = 1. O
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