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LECTURE 1

Introduction to the topic

Throughout the text X denotes a Cantor space. When convenient we shall take a concrete realization
of X, e.g., 2N or 2Z. The group of homeomorphisms of X is denoted by Homeo(X). The natural numbers N
start with 0.

1. Minimal homeomorphisms

Definition 1.1. A homeomorphism φ ∈ Homeo(X) is called periodic, if every orbit of φ is finite. It is called
aperiodic, if all its orbits are infinite. We say that φ has period n, if every orbit of φ has precisely n points;
in this case φn = id. A homeomorphism φ ∈ Homeo(X) is said to be minimal if every its orbit is dense:

Orbφ(x) = X for all x ∈ X. Note that minimal homeomorphisms are always aperiodic.

Proposition 1.2. For a homeomorphism φ ∈ Homeo(X) the following conditions are equivalent:

(i) φ is minimal.

(ii) Every forward orbit of φ is dense: {φn(x)}n∈N = X for all x ∈ X.
(iii) There are no nontrivial closed invariant subspaces of X: if F ⊆ X is closed and φ(F ) = F , then either

F = ∅ or F = X.

(iv) For any non-empty clopen U ⊆ X there is N ∈ N such that X =
N⋃
i=0

φi(U).

Proof. (i) ⇒ (iii) Let F ⊆ X be a closed non-empty invariant subset with x ∈ F . By invariance

Orbφ(x) ⊆ F , hence X = Orbφ(x) ⊆ F .

(iii) ⇒ (ii) Pick x ∈ X and let R = {φn(x)}n∈N; note that φ(R) ⊆ R. If F =
⋂
n∈N φ

n(R), then

φ(F ) =
⋂
n≥1

φn(R) = F

and therefore F = X, whence R = X.
(ii) ⇒ (iv) If U is open and non-empty, then F = ∼

⋃
n∈Z φ

n(U) is closed, invariant and F ∩ U = ∅,
hence F = ∅. Therefore

⋃
n∈Z φ

n(U) = X, which by compactness implies
⋃
|n|≤M φn(U) = X for some M .

Hence

X = φM (X) =

2M⋃
n=0

φn(U)

(iv) ⇒ (i) For any x ∈ X the set ∼ Orbφ(x) is open, invariant, and does not contain x, hence must be
empty. �

Example 1.3. The odometer σ : 2N → 2N is a homeomorphism defined as follows. For x ∈ 2N \ {1}, where
1 is the constant sequence of ones, let n be the smallest integer such that x(n) = 0. The image σ(x) is then
defined by

σ(x)(i) =


0 if i < n,

1 if i = n,

x(i) if i > n.

Set σ(1) = 0. For examples if x = 1110_y, then σ(x) = 0001_y.

Exercise 1.4. Check that σ : 2N → 2N is a homeomorphism. Show that it is minimal.

Example 1.5. Another important example is the shift s : 2Z → 2Z defined by s(x)(i) = x(i+ 1). It is easy
to see that s is indeed a homeomorphism.
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4 1. INTRODUCTION TO THE TOPIC

Exercise 1.6. Show that s is not minimal, but s is transitive: there is x ∈ 2Z such that the orbit Orbφ(x)
is dense in 2Z.

While the shift homeomorphism is not minimal, it has lots of minimal subshifts. We say that a sequence
x ∈ 2Z is homogeneous if for every finite sequence α ∈ 2<ω that occurs in x there is a number N(α) such
that any interval of length N(α) in x contains α.

Theorem 1.7. Let x ∈ 2Z be a binary sequence, and let Y = Orbs(x). The subshift (Y, s|Y ) is minimal if
and only if x is homogeneous.

Proof. Suppose x ∈ X is homogeneous and pick a y ∈ Y . Our goal is to show that Orbs(y) is dense

in Y . For this it is enough to show that x ∈ Orbs(y). Pick a segment α of x. By homogeneity there is an
integer N(α) such that any segment of x of length N(α) contains a subsegment α. Pick any subsegment β
of y of length N(α). Since y ∈ Y , this subsegment β must also occur in x, whereby using homogeneity we

see that α occurs in y. Therefore x ∈ Orbs(y).
For the other direction we show the contrapositive. Suppose x is not homogeneous. It means that there

is a segment α of x and infinitely many segments βn of x such that the length of βn growth and βn does not
contain the subsegment α. Assume for convenience that the length of βn is 2n+ 1. Let yn ∈ X be such that
yn|[−n,n] = βn and α does not occur in yn. By compactness of X there is a y ∈ X and (nk)k∈N such that

ynk → y. It is now easy to see that y ∈ Orbs(x) and that x 6∈ Orbs(y), whence s|Y is not minimal. �

Proposition 1.8. For any φ ∈ Homeo(X) there is a closed non-empty F0 ⊆ X such that φ(F0) = F0 and
(F0, φ|F0

) is minimal.

Proof. Let
F = {F ⊆ X | F is closed, non-empty, and φ(F ) = F }

be the family of closed invariant subsets ordered by inclusion. Note that if (Fλ)λ∈Λ is a chain in F , then⋂
λ Fλ also belongs to F . Hence by Zorn’s lemma we can find a minimal element F0 ∈ F . The system

(F0, φ|F0) is minimal by item (iii) of Proposition 1.2. �

2. Full groups

Definition 1.9. Let φ ∈ Homeo(X) be a homeomorphism of a Cantor space X. The full group of φ is
denoted by [φ] and is defined to be

[φ] = { g ∈ Homeo(X) | ∀x ∈ X ∃n(x) ∈ Z g(x) = φn(x)(x) }.
With an element g ∈ [φ] we associate the cocycle n = ng : X → Z given by g(x) = φn(x)(x). Note that if
φ is aperiodic, then the cocycle is uniquely defined. The topological full group of φ is denoted by [[φ]] and is
the subgroup of those g ∈ [φ] for which the cocycle ng is continuous (or, more formally, can be chosen to be
continuous) with respect to the discrete topology on the integers:

[[φ]] = { g ∈ [φ] | ng : X → Z is continuous }.

Proposition 1.10. Let φ ∈ Homeo(X) be any homeomorphism. An element g ∈ Homeo(X) is in the
topological full group g ∈ [[φ]] if and only if there are clopen sets A1, . . . , Am and integers k1, . . . , km ∈ Z such
that X = A1 t · · · tAm and g|Ai = φki |Ai .

Proof. If g ∈ [[φ]], then the cocycle ng : X → Z can be chosen to be continuous, and therefore the
image ng(X) is finite; let k1, . . . , km ∈ Z be the integers in the image of ng. We set Ai = n−1

g (ki) and the
necessity is proved. For the sufficiency we note that the cocycle ng can be constructed by setting ng|Ai = ki.
If the decomposition of X into the sets Ai is clopen, then the cocycle ng is continuous. �

Definition 1.11. The support of a homeomorphism φ ∈ Homeo(X) is defined to be the complement of the
interior of the set of fixed points, or equivalently

supp(φ) = {x ∈ X | φ(x) 6= x }.
Note that support of an aperiodic homeomorphism is necessarily all of X.

In general support of a homeomorphism is not necessarily open. The following proposition shows that
elements of the topological full group of a minimal homeomorphism are special in this sense.
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Proposition 1.12. Let φ ∈ Homeo(X) be minimal. The support supp(g) of any g ∈ [[φ]] is a clopen subset
of X.

Proof. Pick a g ∈ [[φ]] and find clopen subsets Ai for i ∈ I such that g|Ai = φi|Ai , where I ⊂ N is
finite. The support of g is then given by

supp(g) =
⋃

i∈I\{0}

Ai,

and is therefore clopen. �

Proposition 1.13. Let φ ∈ Homeo(X) be minimal. For any g ∈ [[φ]] and any n ∈ N the set

Xn = {x ∈ X | Orbg(x) has cardinality n }
is clopen.

Proof. Let P = (Ai)i∈I be a clopen partition of X such that g|Ai = φi|Ai , where I ⊂ N is finite. Let
(Bj)

N
j=1 =

∨n
k=0 φ

−k(P) be the refinement of the partitions φ−k(P) for 0 ≤ k ≤ n. For each Bj there is

an integer mj such that g|Bj = φmj |Bj . Let x ∈ Xn and let j0, . . . , jn be such that φk(x) ∈ Bjk for all
0 ≤ k ≤ n. By the definition of Xn we have gn(x) = x and therefore

φ
∑n
k=0mjk (x) = x,

which is possible only if
∑n
k=0mjk = 0, whence Bj0 ⊆ Xn. This shows that Xn is open.

Since

Xn = {x ∈ X | gn(x) = x }
∖ ⋃
m<n

{x ∈ X | gm(x) = x },

the set Xn is also closed. �

Proposition 1.14. Let f ∈ Homeo(X) be a periodic homeomorphism of period n. There exists a clopen set

A ⊆ X such that X =
⊔n−1
i=0 f

i(A).

Proof. For any point x ∈ X we can find a clopen neighbourhood Ux ⊆ X such that f i(Ux) ∩ Ux = ∅
for all 1 ≤ i < n. By compactness of X there is a finite family x1, . . . , xN ∈ X such that X =

⋃
j≤N Uxj .

We now construct sets Aj inductively. Put A1 = Ux1
, and

Aj+1 = Aj ∪

(
Uxj+1

∖ n−1⋃
i=0

f i(Aj)

)
.

It is now straightforward to see that A = AN satisfies the conclusion of the proposition. �

3. Kakutani–Rokhlin partitions

We would like to describe an important space decomposition construction that is attributed to Kakutani
and Rokhlin. Let φ ∈ Homeo(X) be a minimal homeomorphism and let D ⊆ X be a non-empty clopen
subset. We define the first return function tD,φ = tD : D → N by

tD(x) = min{n ≥ 1 | φn(x) ∈ D }.
By minimality of φ, the function tD is well-defined and continuous. We can therefore find a number N ,
positive integers k1, . . . , kN , and a partition D = D1 t · · · t DN into non-empty clopen subsets such that
tD|Di = ki. The space X can then be written as a disjoint union of sets (see Figure 1)

X = D1 t φ(D1) t · · · t φk1−1(D1) tD2 t φ(D2) t · · · t φk2−1(D2) t . . . tDN t φ(DN ) t . . . t φkN−1(DN ).

One refers to the family Di, φ(Di), . . ., φ
ki−1(Di) as to the tower over Di. The number ki is then the height

of this tower. The set Di is the base of the tower, and φki−1(Di) is its top. Note that every point in the top
level of some tower goes under the action of φ to a base of a (possibly different) tower.

Exercise 1.15. Draw the Kakutani–Rokhlin partition of the odometer σ over the cylindrical set D = {x ∈
2N | x(i) = 0, i ≤ n } for some fixed n.

When building a Kakutani–Rokhlin partition it is sometimes useful to assume that the obtained partition
is finer than a given partition P. The following proposition assures that this can always be done.
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Figure 1. A Kakutani–Rokhlin partition of X with base D.

Proposition 1.16. Let φ ∈ Homeo(X) be minimal, let D ⊆ X be a clopen subset, and let P be a partition of
X. There are positive integers K,J1, . . . , JK and clopen subsets D(i, j) ⊆ X indexed by pairs (i, j) satisfying
1 ≤ i ≤ K and 0 ≤ j < Ji such that

(i) X =
⊔
i,j D(i, j) and this partition is finer than P;

(ii) D =
⊔
iD(i, 0);

(iii) φ
(
D(i, j)

)
= D(i, j + 1) for all 1 ≤ i ≤ K and 0 ≤ j < Ji − 1;

(iv) φ
(
D(i, Ji − 1)

)
⊆ D for all 1 ≤ i ≤ K.

Proof. The Kakutani–Rokhlin partition over the base D described above satisfies all the items except
possibly for the first one: it may not refine the partition P. We shall now explain how the Kakutani–Rokhlin
partition can be refined.

Suppose we are given sets D̃(i, j) for 1 ≤ i ≤ K̃ and 0 ≤ j < J̃i that partition X and that satisfy all the
items above with the exception that we do not require for this partition to be finer than P. Take a base of

one of the towers D̃(i, 0). If we are given a partition of D̃(i, 0) into non-empty clopen sets D̃(i, 0) =
⊔
p Fp,

where 1 ≤ p ≤M , then we can divide the ith tower into M towers (see Figure 2). This will naturally define

Figure 2. Refining a Kakutani–Rokhlin partition.

a refined Kakutani–Rokhlin partition with K +M − 1 many towers.

To obtain a partition that is finer than P we do as follows. For each level D̃(i, j) let Fi,j be the partition

of D̃(i, j) induced by P:

Fi,j = { D̃(i, j) ∩ Pk | Pk ∈ P and D̃(i, j) ∩ Pk is non-empty }.

Let Ci,j be the partition of D̃(i, 0) obtained by transferring down the partition Fi,j :

Ci,j =
{
φ−j

(
D̃(i, j) ∩ Pk

) ∣∣ D̃(i, j) ∩ Pk ∈ Fi,j
}
.

Let finally C be the partition of D generated by all the partitions Ci,j . Note that by construction C is finer

that the partition given by the sets D̃(i, 0).

Suppose for example that the partition D̃(i, j) has three towers of height 4, 6 and 6 respectively (see
Figure 3), and the partition P has four pieces Pk, 1 ≤ k ≤ 4 which are shown in Figure 3. The little

bars show how D̃(i, j) is partitioned into Fi,j and dashed lines show how the partitions Fi,j give rise to the
partition C of the base.
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Figure 3. Refining the Kakutani–Rokhlin partition according to the partition P of four pieces.

We now refine the Kakutani–Rokhlin partition D̃(i, j) by splitting towers according to the partition C
as explained in Figure 2, and obtain a new Kakutani–Rokhlin partition D(i, j) for 1 ≤ i ≤ K, 1 ≤ j ≤ Ji,

where K = |C|, and Jk = J̃i whenever D(k, 0) ⊆ D̃(i, 0).
We claim that this finer Kakutani–Rokhlin partition D(i, j) refines P. Indeed, take any level D(i, j).

By construction there are integers k and p such that D(i, j) ⊆ D̃(p, j) ∩ Pk and therefore D(i, j) ⊆ Pk. �

We now give a formal definition.

Definition 1.17. By a Kakutani–Rokhlin partition we shall mean a family of sets D(i, j) satisfying all
the items of Proposition 1.16 (for the trivial partition P = {X} if no other partition is specified). We
use the Greek capital letter chi Ξ to denote Kakutani–Rokhlin partitions. A tower of Ξ is the family
{D(i, j) | 0 ≤ j < Ji } for some fixed i. The ith tower will be denoted by Ti and T (Ξ) will denote the set
of all towers. There are K towers in Ξ. The height of the tower Ti is the integer Ji = |Ti|. The set D(i, 0)
is said to be the base of the tower Ti and φJi−1(D(i, 0)) = D(i, Ji − 1) is the top of Ti. The union D of all
D(i, 0) is said to be the base of Ξ (see Figure 4).

$D_2$

Figure 4. Elements of a Kakutani–Rokhlin partition.





LECTURE 2

Invariant measures

The set M(X) of countably additive Borel probability measures on X is separable, compact and metriz-
able in the weak-* topology, when viewed as a closed subset of the unit ball of the space (C(X))∗ — the
dual to the space of continuous functions on X. The topology is given by the basis of neighbourhoods

U(µ; f1, . . . , fn, ε) =

{
ν ∈ M(X) :

∣∣∣∣ ∫ fi dµ−
∫
fi dν

∣∣∣∣ < ε for i ≤ n
}
,

where fi ∈ C(X) are continuous real-valued functions on X. To generate the topology it is enough to take
for fi characteristic functions of clopen sets.

With a homeomorphism φ ∈ Homeo(X) we associate the closed subspace of invariant measures M(φ)

M(φ) = {µ ∈ M(X) | µ = φ ◦ µ },

where (φ ◦ µ)(A) = µ
(
φ−1(A)

)
. According to the Krylov–Bogoliubov Theorem this set is never empty.

Theorem 2.1 (Krylov–Bogoliubov). For any φ ∈ Homeo(X) the set M(φ) is non-empty.

Proof. Pick an x ∈ X and let δx be the Dirac measure concentrated at x. Set

µn =
1

n

n−1∑
i=0

φi ◦ δx.

Note that φ ◦ δx = δφ(x). Since µn ∈ M(X) and since M(X) is compact, there is a subsequence (nk) and a
measure ν ∈ M(X) such that µnk → ν. We claim that ν ∈ M(φ). Indeed, for any f ∈ C(X)∫

f dµnk =
1

nk

nk−1∑
i=0

f
(
φi(x)

)
,

∫
f d(φ ◦ µnk) =

1

nk

nk−1∑
i=0

f
(
φi+1(x)

)
=

∫
f dµnk +

1

nk

(
f(φnk(x))− f(x)

)
,

and therefore ∣∣∣∣ ∫ f d
(
φ ◦ µnk

)
−
∫
f dµnk

∣∣∣∣ ≤ 2

nk
||f ||∞.

This implies that φ ◦ µnk → ν, but also φ ◦ µnk → φ ◦ ν, whence φ ◦ ν = ν. �

Proposition 2.2. Let φ ∈ Homeo(X) be a minimal homeomorphism. For any non-empty clopen A ⊆ X the
infimum inf{µ(A) | µ ∈ M(φ) } > 0 is strictly positive.

Proof. Let c = inf{µ(A) | µ ∈ M(φ) }. If c = 0, then we can find a sequence µn ∈ M(φ) such
that µn(A) ≤ 1/n. By compactness of M(φ) there is a measure µ ∈ M(φ) such that µ(A) = 0, and thus
µ(X) = µ

(⋃
i∈Z φ

i(A)
)

= 0, which is impossible. �

Theorem 2.3 (Glasner–Weiss [GW95], Lemma 2.5). Let φ ∈ Homeo(X) be a minimal homeomorphism
and A,B ⊆ X be clopen subsets such that µ(B) < µ(A) for all µ ∈ M(φ). There exists an element g ∈ [[φ]]
such that g(B) ⊂ A. Moreover one can find such a g ∈ [[φ]] that also satisfies g2 = id and g|∼(B∪g(B)) = id.

9
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Proof. Without loss of generality we may assume that A ∩ B = ∅. Put f = 1A − 1B , and note that∫
f dµ > 0 for any µ ∈ M(φ). We claim that there is c > 0 such that

inf
µ∈M(φ)

∫
f dµ > c > 0.

To see this we let

εµ = 1/2 ·
∫
f dµ.

The family of neighbourhoods {U(µ; f, εµ) | µ ∈ M(φ) } covers M(φ). By compactness there is a finite family
µ1, . . . , µn such that M(φ) =

⋃
i U(µi; f, εµi). One can now set c = 1/2 ·min{ εmi | i ≤ n }.

The next step is to show that there must be an N0 > 0 such that for all x ∈ X and all N ≥ N0

c ≤ 1

N

N−1∑
i=0

f
(
φi(x)

)
.(1)

If this isn’t so, then there is an increasing sequence nk of natural numbers and a sequence of points xk ∈ X
such that

1

nk

nk−1∑
i=0

f
(
φi(xk)

)
∈ [−1, c].

As in the proof of the Krylov–Bogoliubov Theorem we set µk = 1
nk

∑nk−1
i=0 φ ◦ δxk , and after passing to a

subsequence we may assume that µk → ν ∈ M(φ), hence∫
f dν ≤ c,

contradicting the choice of c.

Figure 5. Construction of g.

We fix an N0 > 0 such that (1) holds, and find a non-empty clopen D ⊆ B such that φi(D)∩D = ∅ for
all i ≤ N0. The inequality

c ≤ 1

N

N−1∑
i=0

f
(
φi(x)

)
implies that each column in the Kakutani–Rokhlin stack over D has more elements in A, than in B and we
define g in a natural way (see Figure 5). �

Theorem 2.4 (Glasner–Weiss [GW95], Proposition 2.6). Let φ ∈ Homeo(X) be a minimal homeomorphism,
and A,B ⊆ X be clopen sets such that µ(A) = µ(B) for all µ ∈ M(φ). There exists g ∈ [φ] such that
g(A) = B, g2 = id, and g|∼(A∪B) = id. Moreover, g can be chosen such that the corresponding cocycle ng
has at most two points of discontinuity.

Proof. Without loss of generality we may assume that A ∩ B = ∅. Pick an x0 ∈ A and n0 such that
y0 = φn0(x0) ∈ B. We fix a complete metric d on X. Find A1 — a clopen neighbourhood of x0 of diameter
< 1 and such that A′1 = A \A1 satisfies

µ(A)/2 < µ(A′1) < µ(A) ∀µ ∈ M(φ).

Next we choose a clopen V1 ⊆ B a neighbourhood of y0 such that

µ(A′1) < µ(B \ V1) < µ(B) ∀µ ∈ M(φ).

By Theorem 2.3 we can find an element g1 ∈ [[φ]] with g1(A′1) = B′1 ⊂ B \V1, g1(B′1) = A′1 and g1|∼(A′1∪B′1) =
id. We set B1 = B \B′1; note that µ(B1) = µ(A1) for all µ ∈ M(φ).
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Figure 6. Construction of g1

We can now repeat the process in the opposite direction: pick B2 a clopen neighbourhood of y0 such
that B′2 = B1 \B2 satisfies

µ(B1)/2 < µ(B′2) < µ(B1) ∀µ ∈ M(φ),

choose V2 ⊂ A1 a clopen neighbourhood of x0 such that

µ(B′2) < µ(A1 \ V2) < µ(A1) ∀µ ∈ M(φ),

and by Theorem 2.3 choose a g2 ∈ [[φ]] such that g2(B′2) = A′2, g2(A′2) = B′2 and g2 is trivial on the
complement of A′2 ∪B′2. Set A2 = A \A′2; note that µ(B2) = A2 for all µ ∈ M(φ). Continuing in this fashion
we obtain a decomposition of the space

X =
(
X \ (A ∪B)

)
t
(⋃

A′n

)
t
(⋃

B′n

)
t {x0, y0},

and define g ∈ [φ] by

g(x) =


x if x ∈ X \ (A ∪B),

gn(x) if x ∈ A′n ∪B′n,
y0 if x = x0,

x0 if x = y0.

The cocycle ng may have discontinuities at points x0 and y0 only. �

Exercise 2.5. Let A1, . . . , An be disjoint clopen subsets of X such that µ(Ai) = µ(Aj) for all µ ∈ M(φ) and
let σ be a permutation of {1, . . . , n}. Show that there exists h ∈ [φ] such that h(Ai) = Aσ(i) for all i ≤ n.





LECTURE 3

Spatial realization

Let for brevity Γ denote the topological full group [[φ]] of a minimal homeomorphism.

Proposition 3.1. For every non-empty clopen A ⊆ X, every x ∈ A, and every n > 0 there is an h ∈ Γ
such that supp(h) ⊆ A, x ∈ supp(h) and h|supp(h) has period n.

Proof. By the minimality of φ we can find 0 = k0 < k1 < . . . < kn−1 such that φki(x) ∈ A. Let U be
a sufficiently small neighbourhood of x such that φki(U) ∩ φkj (U) = ∅ for i 6= j, and set

h|φki (U) = φki+1−ki |
φki (U)

, for i < n and h|φkn−1 (U) = φ−
∑
i ki |φkn−1 (U). �

For a clopen subset A define

ΓA = { g ∈ Γ | supp(g) ⊆ A }.
Note that ΓA is a subgroup of Γ.

For a subset F ⊆ Γ, the centralizer of F is denoted by F ′ and is defined to be the set of elements in Γ
that commute with all elements from F :

F ′ = { g ∈ Γ | ∀f ∈ F gf = fg }.

Note that F ⊆ F ′′ and (F1 ∪ F2)′ = F ′1 ∩ F ′2.

Lemma 3.2. Let A1, . . . , An be clopen subsets of X.

(i) If ΓA1
= ΓA2

, then A1 = A2.

(ii)
(
ΓA1 ∪ · · · ∪ ΓA2

)′
= Γ∼

⋃
Ai .

(iii) ΓA1
∩ ΓA2

= ΓA1∩A2
.

Proof. (i) We show the contrapositive. Suppose that A1 \A2 6= ∅. By Proposition 3.1 one can find an
involution g ∈ Γ such that supp(g) ⊆ A1 \A2, and therefore g ∈ ΓA1

\ ΓA2
.

(ii) Suppose g ∈
(

ΓA1 ∪ . . .∪ΓAn

)′
and assume towards a contradiction that g 6∈ Γ∼

⋃
i Ai

, i.e., there are

i ≤ n and B ⊆ Ai such that g(B) ∩ B = ∅. We can find an h ∈ ΓAi such that supp(h) ⊆ B and C ⊆ B is
such that h(C) ∩ C = ∅. Therefore gh(C) 6= hg(C) = g(C). Hence g 6∈ Γ′Ai , which is a contradiction. The
other inclusion is obvious.

(iii) The equality follows immediately from the definitions. �

Let π ∈ Γ be an involutions: γ2 = id. Note that the support supp(π) is a clopen subset of X. We
construct the following subsets of Γ:

Cπ = { g ∈ Γ | gπ = πg },
Uπ = { g ∈ Cπ | g2 = id, and g(hgh−1) = (hgh−1)g for all h ∈ Cπ },
Vπ = { g ∈ Γ | gh = hg for all h ∈ Uπ },
Sπ = { g2 | g ∈ Vπ },
Wπ = { g ∈ Γ | gh = hg for all h ∈ Sπ }.

Lemma 3.3 (Bezuglyi–Medynets [BM08], Lemma 5.10). Wπ = Γsupp(π).

Proof. We prove a series of claims each clarifying some properties of the sets constructed above. The
proof of the lemma will then follow from these claims.

(1) g(supp(π)) = supp(π) for all g ∈ Cπ.
It is easy to verify that supp(gπg−1) = g(supp(π)). Since gπg−1 = π, we get g(supp(π)) ⊆ supp(π).

13
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(2-i) supp(g) ⊆ supp(π) for all g ∈ Uπ. Suppose this is false and there are a clopen A ⊆ ∼ supp(π) such
that g(A) ∩ A = ∅. By Proposition 3.1 we can find an h ∈ Γ with support in A such that for some V ⊆ A
one has hi(V ) ∩ V = ∅ for i = 1, 2. Note that h ∈ Cπ, but

g(hgh−1)(V ) = g2h−1(V ) = h−1(V ),
(hgh−1)g(V ) = hg2(V ) = h(V ).

Since h−1(V ) 6= h(V ), we get g 6∈ Uπ.

(2-ii) If a clopen set A is π-invariant, then πA ∈ Uπ.
Obviously π2

A = 1. Since for x ∈ A we have π ◦ πA(x) = π ◦ π(x) = x = πA ◦ π(x), and for x ∈ ∼A we have
π ◦ πA(x) = π(x) = πA ◦ π(x), it follows that πA ∈ Cπ. Finally one checks that

πA(hπAh
−1)(x) = (hπAh

−1)πA(x) =

{
x if x ∈ (∼A ∩ h(∼A)) ∪ (A ∩ h(A)),

π(x) if x ∈ (∼A ∩ h(A)) ∪ (A ∩ h(∼A)).

(3-i) Vπ ⊆ Cπ.
For this we show that π ∈ Uπ. Indeed π ∈ Cπ, π2 = id, and π(hπh−1) = id = (hπh−1)π for all h ∈ Cπ.

(3-ii) If g ∈ Vπ, then g(B) ⊆ B ∪ π(B) for all B ⊆ supp(π). Suppose this is false and let B be such that
g(B) 6⊆ B ∪ π(B). Set B0 = B ∪ π(B), and C = g(B0) \B0. Note that π(B0) = B0 and C 6= ∅. By (3-i) we
know that πg(B0) = gπB0

= g(B0) and therefore

π(C) = π(gB0 \B0) = πg(B0) \ π(B0) = gB0 \B0 = C.

Using (1) and (3-i) we see that g(supp(π)) = supp(π). Since B ⊆ supp(π), this implies B0 ⊆ supp(π). We
therefore can write C = C1 t C2 such that π(C1) = C2. Note that by construction g(C) ∩ C = ∅. By (2-ii)
πC ∈ Uπ, but also

πCg(C1) = g(C1) 6= g(C2) = gπC(C1).

Whence g 6∈ Vπ.

(3-iii) If g ∈ Vπ, then g2(B) = B for any clopen B ⊆ supp(π).
Suppose there is B ⊆ supp(π) such that g2(B) 6= B. By shrinking B we may assume that

g(B) ∩B = ∅ = g2(B) ∩B.
By (3-ii) g(B) ⊆ B ∪ π(B) and

g2(B) ⊆ g(B) ∪ gπ(B) = g(B) ∪ πg(B).

But since g(B) ∩ B = ∅, we conclude g(B) ⊆ π(B) and g2(B) ⊆ πg(B) ⊆ π2(B) = B. Note that
µ(B \ g2(B)) = 0 for all µ ∈ M(φ). Therefore the minimality of φ implies B \ g2(B) = ∅.

(4-i) If g ∈ Sπ, then supp(g) ⊆ ∼ supp(π).
Follows immediately from (3-iii).

(4-ii) For any clopen C ⊆ ∼ supp(π) there is an involution h ∈ Sπ supported on C.
By Proposition 3.1 there exists a periodic homeomorphism g of order 4 with support in C. By (2-i) g ∈ Vπ
and therefore g2 ∈ Sπ.

(5) Wπ = Γsupp(π).
It follows from (4-i) that Γsupp(π) ⊆ Wπ. If g ∈ Wπ and for some B ⊆ ∼ supp(π) we have g(B) ∩ B = ∅,
then take by (4-ii) any involution h ∈ Sπ supported on B, let C be such that h(C) ∩ C = ∅. It now follows
that hg(C) = g(C) 6= gh(C). Hence gh 6= hg, contradicting the choice of g. �

Lemma 3.4. If π1, . . . , πn ∈ Γ and ρ1, . . . , ρm ∈ Γ are involutions, then
⋃
i supp(πi) =

⋃
j supp(ρj) if and

only if
(
Wπ1

∪ . . . ∪Wπn

)′
=
(
Wρ1 ∪ . . . ∪Wρm

)′
.

Proof. Follows from Lemma 3.3 and Lemma 3.2. �

Theorem 3.5 (Stone). Homeomorphisms of the Cantor space X are in one-to-one correspondence with the
automorphisms of the Boolean algebra CO(X) of clopen subsets of X. In other words any automorphisms α̂
of CO(X) has a unique realization ψ ∈ Homeo(X) such that ψ(A) = α̂(A) for all clopen A ⊆ X.

Exercise 3.6. Prove Stone’s Theorem.
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Theorem 3.7 (Giordano–Putnam–Skau [GPS99], Theorem 4.2). Let φ1 and φ2 be minimal homeomor-
phisms, and let Γ1 = [[φ1]], Γ2 = [[φ2]]. If α : Γ1 → Γ2 is a group isomorphism, then α is necessarily spatial:
there is a homeomorphism Λ : X → X such that α(g) = ΛgΛ−1 for all g ∈ Γ1.

Proof. By Stone’s Theorem it is enough to define Λ on the clopen subsets of X. By Proposition 3.1
for any clopen A ⊆ X we can find a finite family of involutions π1, . . . , πn ∈ Γ1 such that

⋃
i supp(πi) = ∼A.

By Lemma 3.3 there exists a clopen subset Λ(A) such that

(Wα(π1) ∪ . . . ∪Wα(πn))
′ = Γ2

Λ(A).

By Lemma 3.4 the map A 7→ Λ(A) is well-defined.
We claim that Λ is an automorphism of the boolean algebra of clopen subsets of X. First of all we

show that Λ(A1 ∩ A2) = Λ(A1) ∩ Λ(A2). If π1, . . . , πn ∈ Γ1 and ρ1, . . . , ρm ∈ Γ1 are involutions such that
∼A1 =

⋃
i supp(πi) and ∼A2 =

⋃
j supp(ρj), then

∼(A1 ∩A2) = (∼A1) ∪ (∼A2) =
(⋃
i

supp(πi)
)
∪
(⋃
j

supp(ρj)
)

and hence
Γ2

Λ(A1∩A2) = (Wα(π1) ∪ · · · ∪Wα(πn) ∪Wα(ρ1) · · ·Wα(ρm))
′

= (Wα(π1) ∪ · · · ∪Wα(πn))
′ ∩ (Wα(ρ1) · · ·Wα(ρm))

′

= Γ2
Λ(A1) ∩ Γ2

Λ(A2) = Γ2
Λ(A1)∩Λ(A2).

It now follows that Λ(A1 ∩A2) = Λ(A1) ∩ Λ(A2).
The next step is to show that Λ(∼A) = ∼Λ(A). Let π1, . . . , πn ∈ Γ1 and ρ1, . . . , ρm ∈ Γ1 be involutions

such that ∼A =
⋃
i supp(πi) and A =

⋃
j supp(ρj). Since (Γ1

A)′ = Γ1
∼A, we get

(Wπ1
∪ · · · ∪Wπn)′′ = (Wρ1 ∪ · · · ∪Wρm)′

and therefore also
(Wα(π1) ∪ · · · ∪Wα(πn))

′′ = (Wα(ρ1) ∪ · · · ∪Wα(ρm))
′,

which implies

Γ2
Λ(∼A) =

(
Wα(ρ1) ∪ · · · ∪Wα(ρm)

)′
=
(
Wα(π1) ∪ · · · ∪Wα(πn)

)′′
=
(
Γ2

Λ(A)

)′
= Γ2

∼Λ(A),

and therefore Λ(∼A) = ∼Λ(A).
Since ∅ = supp(id), we see that Λ(X) = X and Λ(∅) = ∅. And we have proved that Λ is an

endomorphism of CO(X). It is easy to see that Λ is bijective, since its inverse is defined by: if B is clopen
and π1, . . . , πn ∈ Γ2 are such that ∼B =

⋃
i supp(πi), then Λ−1(B) is defined to be such that

Γ1
Λ−1(B) = (Wα−1(π1) ∪ · · · ∪Wα−1(π1))

′.

So Λ is an automorphism of CO(X).
Claim. If π ∈ Γ1 is an involution, then Λ(supp(π)) = supp(α(π)). Indeed

∼Λ
(
supp(π)

)
= Λ

(
∼ supp(π)

)
= ∼ supp(α(π)),

whence Λ(supp(π)) = supp(α(π)).
We finally show that for any clopen set B we have α(g)(B) = ΛgΛ−1(B). Suppose this is not the case.

Let V be a non-empty clopen set such that V ∩ α(g−1)ΛgΛ−1(V ) = ∅. Pick an involution π ∈ Γ2 such
that supp(π) ⊆ V . Note that by the claim α−1(π) is supported by Λ−1(V ), and therefore gα−1(π)g−1 is
supported by gΛ−1(π). This implies α

(
gα−1(π)g

)
= α(g)πα(g−1) is supported by ΛgΛ−1(V ). But on the

other hand α(g)πα(g−1) is supported by α(g)(V ). This shows that α(g)V ∩ ΛgΛ−1(V ) 6= ∅, contradicting
the choice of V . �





LECTURE 4

Boyle’s Theorem and Flip conjugacy

Definition 4.1. We say that two homeomorphisms φ, ψ ∈ Homeo(X) are flip conjugated if there is an
α ∈ Homeo(X) such that either φ = αψα−1 or φ−1 = αψα−1. This is an equivalence relation.

Theorem 4.2 (Boyle–Tomiyama [BT98]). Let φ and ψ be minimal homeomorphisms. If α ∈ Homeo(X) is
such that

[[φ]] 3 g 7→ αgα−1 ∈ [[ψ]]

is an isomorphism, then φ and ψ are flip conjugated.

Proof. By switching from φ to αφα−1 we may assume that α = id and that [[φ]] = [[ψ]]. Let n : X → Z
be the cocycle ψ(x) = φn(x)(x), and define

f(k, x) =


−
(
n(ψ−1(x)) + · · ·+ n(ψk(x))

)
for k < 0,

0 for k = 0,

n(x) + · · ·+ n(ψk−1(x)) for k > 0.

This function satisfies ψk(x) = φf(k,x)(x) for all k ∈ Z and the following cocycle identity:

f(k + l, x) = f
(
k, ψl(x)

)
+ f(l, x).

Fix an N such that |n(x)| ≤ N for all x ∈ X. The cocycle identity implies∣∣f(k ± 1, x)− f(k, x)
∣∣ ≤ N,

and also ∣∣f(k, ψ(x)
)
− f(k, x)

∣∣ ≤ ∣∣f(k + 1, x)− f(k, x)
∣∣+ |f(−1, ψ(x))| ≤ 2N.

From ψk(x) = φf(k,x)(x) we see that the map k 7→ f(k, x0) is a bijection for any fixed x0 ∈ X, and therefore
for any x0 ∈ X there is an N > 0 such that

[−N,N ] ⊆
{
f(k, x0)

∣∣ k ∈ [−N,N ]
}
.

By continuity of the cocycle n, the function f is locally constant, hence for any x0 there is a neighbourhood
Ux0

of x0 such that
[−N,N ] ⊆

{
f(k, y)

∣∣ k ∈ [−N,N ]
}

holds for all y ∈ Ux0
. By compactness we can take N to be large enough to work for all x ∈ X.

Note that f(N, x) 6= 0 for all x ∈ X. Moreover f(N, x) > 0 if and only if f(n, x) > 0 and f(−n, x) < 0
for all n ≥ N . Similarly, f(N, x) < 0 if and only if f(n, x) < 0 and f(−n, x) > 0 for all n ≥ N . We define
sets

A =
{
x ∈ X

∣∣ f(N, x) > 0
}
,

B =
{
x ∈ X

∣∣ f(N, x) < 0
}
.

These sets are clopen, ψ-invariant, and X = A t B. Therefore either A = ∅, or B = ∅. By taking ψ−1 for
ψ we may assume without loss of generality that A = X. Define a function c : X → N as follows.

c(x) = # [−NN,∞) ∩ { f(i, x) | i ≤ 0 }
= # [−NN,∞) ∩ { f

(
i− 1, ψ(x)

)
+ n(x) | i ≤ 0 }

= # [−NN,∞) ∩ { f
(
i, ψ(x)

)
+ n(x) | i ≤ 0 } − 1

= # [−NN − n(x),∞) ∩ { f
(
i, ψ(x)

)
| i ≤ 0 } − 1

= # [−NN,∞) ∩ { f
(
i, ψ(x)

)
| i ≤ 0 }+ n(x)− 1

= c(ψ(x)) + n(x)− 1.

17



18 4. BOYLE’S THEOREM AND FLIP CONJUGACY

Therefore 1 + c(x) = c(ψ(x)) + n(x).
Finally we define g(x) = φc(x)x. Note that

φg(x) = φ1+c(x)x = φn(x)+c(ψ(x))(x) = φc(ψ(x))ψ(x) = gψ(x).

This implies φkg = gψk for all k, and hence g is surjective. Also if g(x) = gψk(x), then φkg(x) = g(x), hence
Orbφ(g(x)) is finite, which is impossible. This shows that g is bijective. Since c is continuous, g is in fact a
homeomorphism of X such that φ = gψg−1. �

Combining Theorem 3.7 and Theorem 4.2 we get

Theorem 4.3 (Giordano–Putnam–Skau [GPS99], Corollary 4.4). Two minimal homeomorphisms have
isomorphic full groups if and only if they are flip conjugated.



LECTURE 5

Simplicity of commutator subgroups

Recall that for a group Γ its commutator subgroup is the subgroup D(Γ) generated by all the elements of
the form [g, h] = ghg−1h−1. In this section we shall prove that the commutator subgroup of the topological
full group of a minimal homeomorphism is simple. In our exposition we follow Section 3 of [BM08].

Lemma 5.1 (Bezuglyi–Medynets [BM08], Lemma 3.2). Let φ ∈ Homeo(X) be a minimal homeomorphism.
For any g ∈ [[φ]] and δ > 0 there exist g1, . . . , gm ∈ [[φ]] such that g = g1 · · · gm and µ

(
supp(gi)

)
< δ for all

µ ∈ M(φ).

Proof. Let g ∈ [[φ]] be given and suppose first that g is periodic. Since g is an element of the topological
full group, by Propositions 1.13 and 1.14 we can find non-empty clopen sets {Ak}k∈I , where I ⊂ Z is finite
such that the space X decomposes into disjoint clopen sets

X =
⊔
k∈I

k−1⊔
i=0

gi(Ak),

and gk(x) = x for all x ∈ Ak.
We now can decompose each Ak into non-empty clopen subsets

Ak =

nk⊔
j=1

B
(k)
j

such that for each k and each 1 ≤ j ≤ nk we have µ
(
B

(k)
j

)
< δ/k for all µ ∈ M(φ). We set

Ck,j =

k−1⊔
i=0

gi
(
B

(k)
j

)
and gk,j = g|Ck,j . It is easy to see that all the elements gk,j ∈ [[φ]], and g =

∏
k,j gk,j .

We have proved the lemma for periodic homeomorphisms. We consider the case of a non-periodic g ∈ [[φ]].
Fix k ∈ N such that 1/k < δ and put

X≥k = {x ∈ X | Orbg(x) has at least k elements }.

Since g ∈ [[φ]], by Proposition 1.13 the set X≥k is clopen.
For any x ∈ X≥k we can find a clopen neighbourhood Ux such that gi(Ux)∩Ux = ∅ for all 1 ≤ i < k. By

compactness of X≥k we can find finitely many x1, . . . , xn ∈ X≥k such that X≥k is covered by Ux1
, . . . , Uxn .

We now set B1 = Ux1
and

Bl+1 = Bl t
(
Uxl+1

\
k−1⋃

i=−k+1

gi(Bl)

)
.

Set B = Bn. Note that B is a maximal k-discrete set; in particular, the set B meets every orbit of g in X≥k,
and gi(B) ∩B = ∅ for all 1 ≤ i < k. This shows that µ(B) ≤ 1/k < δ for all µ ∈ M(φ). Define

gB(x) =

{
gk(x) if x ∈ B and k = min{ l ≥ 1 | gl(x) ∈ B },
x if x 6∈ B.

It is easy to see that gB ∈ [[φ]], µ
(
supp(gB)

)
< δ and g−1

B ◦ g is periodic. The lemma is proved by appealing
to the earlier case of a periodic g. �

19
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Lemma 5.2 (Bezuglyi–Medynets [BM08], Lemma 3.3). Let H be a normal subgroup of a group G. If
g1, . . . , gn ∈ G and h1, . . . , hm ∈ G are such that [gi, hj ] belong to H for any i, j, then the element
[g1 · · · gn, h1 · · ·hm] also belongs to H. Moreover, the following identity holds:

[g1 · · · gn, h1 · · ·hm] =

1∏
p=n

m∏
q=1

g1 · · · gp−1h1 · · ·hq−1[gp, hq]h
−1
q−1 · · ·h

−1
1 g−1

p−1 · · · g
−1
1 .

Proof. It is straightforward to check that

[g1g2, hi] = g1[g2, hi]g
−1
1 [g1, hi],

[gj , h1h2] = [gj , h1]h1[gj , h2]h−1
1 .

The general form now follows by induction from these identities. �

Lemma 5.3 (Bezuglyi–Medynets [BM08], Lemma 3.2). Let φ ∈ Homeo(X) be a minimal homeomorphism.
For any f ∈ D([[φ]]) and δ > 0 there exist g′1, . . . , g

′
N ∈ [[φ]], h′1, . . . , h

′
N ∈ [[φ]] such that f = [g′1, h

′
1] · · · [g′N , h′N ]

and µ
(
supp(g′i) ∪ supp(h′i)

)
< δ for all µ ∈ M(φ).

Proof. Since D([[φ]]) is generated by commutators [g, h], it is enough to prove the lemma for elements
of the form [g, h]. Fix a δ > 0 and using Lemma 5.1 we can find g1, . . . , gn ∈ [[φ]] and h1, . . . , hm ∈ [[φ]] such
that g = g1 · · · gn, h = h1 · · ·hm and supp(gi) < δ/2, supp(hj) < δ/2. By Lemma 5.2 we know that

[g1 · · · gn, h1 · · ·hm] =

1∏
p=n

m∏
q=1

g1 · · · gp−1h1 · · ·hq−1[gp, hq]h
−1
q−1 · · ·h

−1
1 g−1

p−1 · · · g
−1
1 .

Note that supp([gi, hj ]) ⊆ supp(gi)∪ supp(hj) and therefore µ
(
supp([gi, hj ])

)
< δ. Finally since any f ∈ [[φ]]

is µ-preserving for all µ ∈ M(φ), and since supp(fαf−1) = f(supp(α)), we see that

supp(g1 · · · gp−1h1 · · ·hq−1[gp, hq]h
−1
q−1 · · ·h

−1
1 g−1

p−1 · · · g
−1
1 ) < δ,

and also g1 · · · gp−1h1 · · ·hq−1[gp, hq]h
−1
q−1 · · ·h

−1
1 g−1

p−1 · · · g
−1
1 ∈ D([[φ]]), because D([[φ]]) is normal in [[φ]]. �

Lemma 5.4. Let φ ∈ Homeo(X) be a minimal homeomorphism. If A and B are clopen subsets of X such
that 2µ(B) < µ(A) for all µ ∈ M(φ), then there exists an α ∈ D([[φ]]) such that α(B) ⊂ A.

Proof. By setting α to be id on A ∩ B we may assume that A ∩ B = ∅. Applying Theorem 2.3 we
can find α1 and α2 in [[φ]] such that α1(B) ⊆ A and α2(α1(B)) ⊆ A \ α1(B). Set α = α1a2. Therefore
α(B) = α1(B) ⊆ A. Since α2 = αα−1

1 α−1, we get that α = α1α2 = [α1, α]. �

Theorem 5.5 (Bezuglyi–Medynets [BM08], Theorem 3.4). Let φ ∈ Homeo(X) be a minimal homeomor-
phism. Let Γ be either D([[φ]]) or [[φ]]. If H is a non-trivial normal subgroup of Γ, then D(Γ) ⊆ H.

Proof. We show that for all g, h ∈ Γ their commutator [g, h] is in H. Pick any non-trivial element
f ∈ H and a non-empty clopen set E such that f(E)∩E = ∅. By compactness of the set M(φ) we see that
2δ = inf{µ(E) | µ ∈ M(φ) } > 0.

Using Lemma 5.1 and Lemma 5.3 we may find elements gi, hj ∈ Γ such that g = g1 · · · gn, h = h1 · · ·hm
and µ(supp(gi)) < δ/2, µ(supp(hj)) < δ/2 for all µ ∈ M(φ). In the view of Lemma 5.2 the proof would be
over if we could show that for all g, h ∈ Γ such that µ(supp(g) ∪ supp(h)) < δ for all µ ∈ M(φ) we have
[g, h] ∈ H.

Put F = supp(g) ∪ supp(h) and find by Lemma 5.4 an element α ∈ D([[φ]]) such that α(F ) ⊆ E. By

normality q = α−1fα ∈ H. Therefore ĥ = [h, q] = hqh−1q−1 ∈ H, and [g, ĥ] ∈ H. Since q(F ) ∩ F = ∅, the
elements g−1 and qh−1q−1 commute. Whence

[g, ĥ] = g(hgh−1g−1)g−1(qhq−1h−1) = ghg−1qh−1q−1qhq−1h−1 = [g, h] ∈ H.

And so D(Γ) ≤ H. �

Corollary 5.6 (Matui [Mat06], Theorem 4.9). If φ ∈ Homeo(X) is minimal, then D(D([[φ]])) = D([[φ]])
and D([[φ]]) is simple.
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Proof. Since D(D([[φ]])) is a normal subgroup of [[φ]], we may apply Theorem 5.5 with H = D(D([[φ]]))
and Γ = [[φ]]. This shows that D([[φ]]) ≤ D(D([[φ]])), and therefore D(D([[φ]])) = D([[φ]]).

To show the simplicity of D([[φ]]) let H be any non-trivial normal subgroup of D([[φ]]). By another
application of Theorem 5.5 we obtain D(D([[φ]])) ≤ H, and therefore D([[φ]]) = H. �





LECTURE 6

Finite generation of commutator subgroups

Let φ ∈ Homeo(X) be a minimal homeomorphism and let U be a clopen subset of X such that φ−1(U),
U , and φ(U) are pairwise disjoint. We define γU to be the homeomorphism

γU (x) =


φ(x) if x ∈ φ−1(U) ∪ U,
φ−2(x) if x ∈ φ(U),

x otherwise.

Lemma 6.1. Elements γU are in the commutator subgroup D([[φ]]).

Proof. Define an involution g ∈ [[φ]] by

g(x) =

{
φ(x) if x ∈ φ−1(U),

φ−1(x) if x ∈ U.

Figure 7. Homeomorphisms γU , g, and γUg
−1γ−1

U showing γU = [g, γU ].

The equality γU = [g, γU ] corresponds to the following identity within the symmetric group on three elements:

(01)(012)(01)(021) = (012) �

Let H = 〈γU 〉 be the subgroup of [[φ]], where U ranges over clopen subsets such that φ−1(U), U , and φ(U)
are pairwise disjoint. We shall show that H is a normal subgroup of D([[φ]]), and conclude using Corollary
5.6 that H = D([[φ]]).

Lemma 6.2. If g ∈ [[φ]] has order 3, then g ∈ H.

Proof. Let g ∈ [[φ]] be an element of order 3. By Propositions 1.13 and 1.14 we can find a clopen subset
A ⊆ X such that A, g(A), and g2(A) are pairwise disjoint, and supp(g) = A t g(A) t g2(A). Since g ∈ [[φ]],
we can find a partition B1, . . . , Bm of X and integers ri such that g|Bi = φri |Bi . Let P0, P1, and P2 be
partitions of A defined by

P0 = {Bi ∩A}i≤m,
P1 = g−1{Bi ∩ g(A)}i≤m,
P2 = g−2{Bi ∩ g2(A)}i≤m.

The common refinement of partitions Pj is a partition A1, . . . , An of A such that for any i ≤ n there are
integers ki and li such that g|Ai = φki |Ai , g|g(Ai) = φli |g(Ai), g|g2(Ai) = φ−ki−li |g2(Ai). Let gi be the

restriction of g onto Ai ∪ g(Ai) ∪ g2(Ai). Elements gi commute and g = g1 · · · gn.
It is therefore enough to prove the lemma for elements g ∈ [[φ]], g3 = id, for which there is a clopen

set A and two integers k, l such that A, g(A), and g2(A) partition the support of g, and g|A = φk|A,
g|g(A) = φl|g(A). Fix such a g. For any x ∈ A there is a clopen neighbourhood x ∈ U ⊆ A such that

φi(U) ∩ φj(U) = ∅ for all 0 ≤ i, j ≤ k + l, i 6= j. By compactness, we may find a finite family of these
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neighbourhoods Uj , j ≤ N , that covers all of A. Let C1, . . . , Cp be the partition of A generated by Uj . Let
gi be the restriction of g onto the set Ci ∪ g(Ci) ∪ g2(Ci). Elements gi commute and g = g1 · · · gp.

It is therefore enough to prove the lemma for elements g ∈ [[φ]], g3 = id, for which there is a clopen set A
and two integers k, l such that A, g(A), and g2(A) partition the support of g, g|A = φk|A, g|g(A) = φl|g(A),

and φi(A) ∩ φj(A) = ∅ for all 0 ≤ i, j ≤ k + l, i 6= l. Such an element can naturally be regarded as an
element in Sk+l+1 and γφi(A) corresponds to a cyclic permutation (i−1 i i+1), which generate the alternate
subgroup Ak+l+1 / Sk+l+1. It remains to note that since g has an odd order, its signature is 0, whence
g ∈ Ak+l+1. �

Exercise 6.3. Prove that for any n ≥ 3 the group An / Sn is generated by elements (i − 1 i i + 1) for
2 ≤ i < n.

Lemma 6.4. The subgroup H ≤ D([[φ]]) is normal. Since D([[φ]]) is simple, it follows that H = D([[φ]]).

Proof. It is enough to show that for γU ∈ H, and any f ∈ D([[φ]]) (or even f ∈ [[φ]]), we have
fγUf

−1 ∈ H. Since fγUf
−1 has order 3, this follows from Lemma 6.2. �

If U ⊆ X is clopen and φ−2(U), φ−1(U), U , φ(U), and φ2(U) are pairwise disjoint, we set τU =
γφ−1(U)γφ(U).

Figure 8. Homeomorphism τU = γφ−1(U)γφ(U).

Lemma 6.5. Let U and V be clopen subsets of X.

(i) If φ−2(V ), φ−1(V ), V , φ(V ), and φ2(V ) are pairwise disjoint and U ⊆ V , then τV γUτ
−1
V = γφ(U) and

τ−1
V γUτV = γφ−1(U); see Figure 9.

Figure 9. τV γUτ
−1
V = γφ(U).

(ii) If φ−1(U), U , φ(U) ∪ φ−1(V ), V , and φ(V ) are pairwise disjoint, then [γV , γ
−1
U ] = γφ(U)∩φ−1(V ); see

Figure 10.

Proof. (i) We may write τV = τUτV \U , and using that the support of τV \U is disjoint from supports
of other homeomorphisms, we get

τV γUτ
−1
V = τUγUτ

−1
U = γφ(U),

where the last identity is a consequence of the following identity on permutations

(01234)(123)(04321) = (012).

Equality τ−1
V γUτV = γφ−1(U) is checked similarly.
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Figure 10. [γV , γ
−1
U ] = γφ(U)∩φ−1(V ).

(ii) Let C = φ(U)∩ φ−1(V ). We may decompose γU = γφ−1(C)γU\φ−1(C) and γV = γφ(C)γV \φ(C). Using
the disjointness of support argument as in the previous item, one sees that

[γV , γ
−1
U ] = [γφ(C), γ

−1
φ−1(C)] = γφ(C)γ

−1
φ−1(C)γ

−1
φ(C)γφ−1(C) = φC ,

where the last equality is equivalent to

(234)(021)(243)(012) = (123). �

Theorem 6.6 (Matui [Mat06], Theorem 5.4). Let φ ∈ Homeo(X) be minimal. The commutator subgroup
D([[φ]]) is finitely generated if and only if (X,φ) is conjugate to a minimal subshift.

Proof. =⇒ Suppose D([[φ]]) is finitely generated, and let g1, . . . , gm ∈ D([[φ]]) be a finite set of gen-
erators, ni be the corresponding cocycles gi(x) = φni(x)(x), and P be the common refinement of parti-
tions {n−1

i (k)}k∈Z. Let s : PZ → PZ be the shift map. We define a continuous map π : X → PZ

by φk(x) ∈ π(x)(k). Note that π is a factor map from (X,φ) to (π(X), s). Define homeomorphisms
fi ∈ Homeo(π(X)) by fi(z) = sk(z) when z(0) ⊆ n−1

i (k). It is easy to see that fi ∈ [[s]] and πgi = fiπ. It
remains to show that π is injective.

Suppose x, y ∈ X are distinct and π(x) = π(y), pick g ∈ D([[φ]]) such that g(x) 6= x and g(y) = y. Write
g as gr1i1 · · · g

rl
il

. Since πgi = fiπ, we get

πg(x) = πgr1i1 · · · g
rl
il

(x)

= fr1i1 · · · f
rl
il
π(x)

= fr1i1 · · · f
rl
il
π(y)

= πgr1i1 · · · g
rl
il

(y)

= πg(y) = π(y) = π(x),

whence skπ(x) = πφk(x) = π(x) for some k ∈ Z, contradicting the minimality of s.

⇐= Suppose (X,φ) is conjugate to a minimal subshift. Without loss of generality we may assume that
X is a shift invariant closed subset of AZ, where A is finite. Moreover, we may assume that x(i) 6= x(j) for
all x ∈ X and i, j ∈ Z with |i− j| ≤ 4. We define cylinder sets by

〈〈a−m · · · a−1a0a1 · · · an〉〉 = {x ∈ X | x(i) = ai, −m ≤ i ≤ n },

for m,n ∈ N, and ai ∈ A. Because of our assumptions, sets φ−2(U), φ−1(U), U , φ2(U) are disjoint for any
cylinder set U . Let H be the subgroup of D([[φ]]) generated by the finite set of elements

{ γU | U = 〈〈abc〉〉, a, b, c ∈ A }.

We claim that H = D([[φ]]), and for this it is enough to show that γU ∈ H for any cylinder set U . From

γφ(〈〈a〉〉) =
∏
b∈A

γ〈〈ab〉〉, γφ−1(〈〈a〉〉) =
∏
b∈A

γ〈〈ba〉〉
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we conclude γφ(〈〈a〉〉) ∈ H and γφ−1(〈〈a〉〉) ∈ H, and therefore also τ〈〈a〉〉. For a cylindrical set

U = 〈〈a−m · · · a−1a0a1 · · · an〉〉 ⊆ 〈〈a0〉〉 = V

an application of Lemma 6.5 implies

τ〈〈a0〉〉γUτ
−1
〈〈a0〉〉 = γφ(U), τ−1

〈〈a0〉〉γUτ〈〈a0〉〉 = γφ−1(U),

whence it suffices to show that γU can be generated for every cylinder set U = 〈〈a−m · · · a−1a0a1〉〉. The latter
follows by induction from the second item of Lemma 6.5 with U = 〈〈a−m · · · a0a1〉〉 and V = 〈〈a1a2〉〉. �



LECTURE 7

Bratteli diagrams and Vershik maps

1. Bratteli diagrams

Our main reference for this lecture is the work of R. Herman, I. Putnam, and C. Skau [HPS92].
A Bratteli diagram consists of a vertex set V graded as a disjoint union of non-empty finite sets V =⊔∞

n=0 Vn and an edge set E =
⊔∞
n=1En, where the sets En are all non-empty and finite, together with source

maps s : En → Vn−1 and range maps r : En → Vn which are both assumed to be surjective. We also require
that V0 consists of a single element V0 = {∅}.

An ordered Bratteli diagram is a Bratteli diagram (V,E) together with a partial ordering ≤ on the edge
set E such that e1, e2 ∈ E are comparable if and only if r(e1) = r(e2). In other words, an ordered Bratteli
diagram is a Bratteli diagram such that for any vertex all the edges coming into this vertex are linearly
ordered.

Let (V,E,≤) be an ordered Bratteli diagram. An edge e ∈ E is said to be minimal (resp. maximal) if it
is the minimal (resp. the maximal) element of the set r−1

(
r(e)

)
. The sets of minimal and maximal elements

in E are denoted by Emin and Emax respectively.

Figure 11. A Bratteli diagram, an ordered Bratteli diagram, Emin, and Emax.

We recall that a rooted tree is an acyclic connected graph with a distinguished vertex—the root of the
tree.

Proposition 7.1. The graphs (V,Emax) and (V,Emin) are rooted trees with ∅ being their root.

Proof. Pick a vertex v ∈ V. Let k be such that v ∈ Vk and put vk = v. Since the set r−1(v) is linearly
ordered, there is a unique maximal element ek ∈ r−1(vk); put vk−1 = s(ek). Similarly, there is a unique
ek−1 ∈ Emax such that r(ek−1) = vk−1. Continuing this argument we construct a sequence ek, . . . , e1 such
that ei ∈ Emax and s(e1) = ∅. This proves that every vertex v ∈ V is connected within Emax to the root
∅, and so (V,Emax) is a connected graph. To show that (V,Emax) is acyclic let e1, . . . , em ∈ Emax and
e′1, . . . , e

′
n ∈ Emax be two simple paths from ∅ to a vertex v ∈ V ; note that s(e1) = ∅ = s(e′1) . Since

ei ∈ Emax, we cannot have r(ei) = r(ei+1), therefore we must necessarily have r(ei) = s(ei+1) and therefore
also m = n, r(em) = r(e′n). But this implies em = e′n, and therefore inductively ei = e′i for all i. This proves
that (V,Emax) is a tree. The proof for (V,Emin) is similar. �

Note that Emax and Emin are trees with finite splitting, and therefore by König’s Lemma there are
infinite branches emax in Emax and emin in Emin. Note that it is possible that emin = emax.

Definition 7.2. An ordered Bratteli diagram (V,E,≤) is called essentially simple if the trees Emin and
Emax have unique infinite branches emin and emax.

Up to now we used the word “path” in the sense of graph theory. Since Bratteli diagrams are graded,
it will be convenient to modify the notion of path. Let (V,E) be a Bratteli diagram. A path from a vertex
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v ∈ Vk to a vertex u ∈ Vl, k < l, is a sequence of edges ek+1, . . . , el such that ei ∈ Vi, s(ek+1) = v, r(el) = u
and s(ei+1) = r(ei) for all k + 1 ≤ i < l. We use P (v, u) to denote the set of all paths between v and u and

P (Vk, Vl) =
⊔
v∈Vk
u∈Vl

P (v, u).

An infinite path in a Bratteli diagram is a sequence of edges e1, e2, . . . such that ei ∈ Ei and r(ei) = s(ei+1).
With any Bratteli diagram B = (V,E) we associate the Bratteli compactum: the space XB of all infinite

paths in B. By definition XB ⊆
∏∞
n=1En and we endow XB with the induced product topology. This makes

XB into a compact metrizable zero-dimensional space. Note that XB is a Cantor space if and only if it has
no isolated points.

2. Vershik maps

Let B = (V,E,≤) be an essentially simple Bratteli diagram. The Vershik map φB : XB → XB is defined
as follows. First of all we define φB(emax) = emin. If x ∈ XB is a non-maximal infinite path, let n be the
smallest such that x(n) 6∈ Emax. Let en > x(n) be the successor of x(n) in r−1

(
r(x(n))

)
. Let e1, . . . , en−1

be the path from ∅ to s(en) within Emin. We set

φB(x)(m) =

{
em if m ≤ n,
x(m) if m > n.

Figure 12. Vershik map acting on an ordered Bratteli diagram.

Proposition 7.3. Let B = (V,E,≤) be an essentially simple ordered Bratteli diagram. The Vershik map
φB : XB → XB is a homeomorphism.

Proof. We first show that φB is a bijection. Define the map ψB : XB → XB by ψB(emin) = emax and
for a non-minimal path x we take n to be minimal such that x(n) 6∈ Emin. Let en < x(n) be the predecessor
of x(n) in r−1

(
r(x(n))

)
and let e1, . . . , en−1 be the path from ∅ to s(en) within Emax. We set

ψB(x)(m) =

{
em if m ≤ n,
x(m) if m > n.

Is is straightforward to check that φB ◦ ψB = id = ψB ◦ φB , and therefore φB is a bijection. Since the
definition of φB is local, it is obviously continuous as a map φB : XB \{emax} → XB \{emin}. The continuity
at the point emax is also straightforward to check. �

Proposition 7.4. Let B = (V,E,≤) be an essentially simple Bratteli diagram, and φB : XB → XB be the
Vershik map. Pick an x ∈ XB and a natural number M .

(i) There exists k1 ≥ 0 such that φ−k1B (x)(i) ∈ Emin for all i ≤M .

(ii) There exists k2 ≥ 0 such that φk2B (x)(i) ∈ Emax for all i ≤M .

(iii) With k1 and k2 defined as above, φ−k1+j
B (x)|M , 0 ≤ j ≤ k2 + k1, is an enumeration of all the paths

P
(
∅, r(x(M))

)
.
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Proof. (i) We prove the statement by induction on M . If M = 1, the statement is obvious from the
definition of ψB—the inverse of φB . For the induction step let x ∈ XB and M be given. By inductive
hypothesis there is l1 such that φ−l1(x)(i) ∈ Emin for all i ≤ M − 1. Therefore φ−l1−1(x)(i) ∈ Emax for all
i ≤ M − 1 and φ−l1−1(x)(M) is the predecessor of x(M). We therefore may continue and find l2 such that
φ−l1−1−l2(x)(i) ∈ Emin for all i ≤M − 1, hence φ−l1−1−l2−1(x)(M) is the predecessor of φ−l1−1(x)(M), etc.
For some p ≥ 1 and

−k1 = −l1 − 1− l2 − 1− · · · − lp−1 − 1− lp
we have φ−k1(x)(i) ∈ Emin for all i ≤M .

Item (ii) is a statement symmetric to item (i), and (iii) is proved similarly by induction on M . �

Definition 7.5. A Bratteli diagram (V,E) is called simple if for every m there is n > m such that from any
vertex in Vm there is path to any vertex in Vn. An ordered Bratteli diagram B = (V,E,≤) is called simple if
it is essentially simple as an ordered diagram, and simple in the above sense as an unordered diagram (V,E).

Note that if B = (V,E) is simple, then XB is a Cantor space.

Proposition 7.6. Let B = (V,E,≤) be an essentially simple ordered Bratteli diagram. The Vershik map
φB : XB → XB is minimal if and only if B is simple.

Proof. Suppose B is simple. In order to prove the minimality of φB it is enough to show that for any
x ∈ XB , any y ∈ XB , and any M there exists n ∈ Z such that φn(x)(i) = y(i) for all i ≤ M . Since the
diagram is assumed to be minimal, we may find an N such that any vertex in VM is connected to any vertex
in VN . Let v = r(x(N)) and u = r(y(M)). By the choice of N we can find a path from u to v, and hence
we can find some z ∈ XB (see Figure 13) such that

z(i) =

{
y(i) if i ≤M,

x(i) if i > N.

By item (iii) of Proposition 7.4, there is an n ∈ Z such that φnB(x) = z. Therefore also φn(x)(i) = y(i) for
all i ≤M , hence φB is minimal.

Figure 13. Paths x, y, and z.

For the inverse implication we prove the contrapositive. Suppose B is not simple: there is m such that
for any n > m there are un ∈ Vm and vn ∈ Vn such that P (un, vn) is empty. Since Vm is finite, there is
u ∈ Vm, an increasing sequence nk, and vk ∈ Vnk such that P (u, vk) is empty. Let yk ∈ XB be such that
r
(
yk(nk)

)
= vk. By compactness of XB we may find a converging subsequence; let y ∈ XB be a limit point

of (yk)k∈N. Note that P
(
u, r(y(i))

)
is empty for all i > m, because if there were a path from u to r(y(i0))

for some i0, then we would find a big enough k such that nk ≥ i0, and y would agree with yk up to index i0,
hence there would be a path from u to vk contrary to the assumption.

Pick x ∈ XB such that r(x(m)) = u. Suppose towards the contradiction that φB is minimal. Then we
can find k ∈ Z such that φkB(y)(i) = x(i) for all i ≤ m. Without loss of generality we may assume that
φkB(y) is tail equivalent to y (this is because by minimality we may find both a negative and a positive such
k ∈ Z) and therefore φkB(y)(N) = y(N) for all large enough N . This implies P

(
u, r(y(N))

)
is non-empty,

contradicting the construction of y. �





LECTURE 8

Minimal homeomorphisms as Vershik maps

1. Realization of homeomorphisms

Theorem 8.1 (Herman–Putnam–Skau [HPS92], Theorem 4.6). Let φ ∈ Homeo(X) be a minimal home-
omorphism and x ∈ X, then there is a simple Bratteli diagram B = (V,E,≤) such that (φ,X, x) and
(φB , XB , emin) are conjugated.

Proof. Using Proposition 1.16 we can find a sequence of Kakutani–Rokhlin partitions

Ξn =
{
D(n)(i, j) | 1 ≤ i ≤ K(n), 0 ≤ j < J

(n)
i

}
with bases D(n) =

⊔
iD

(n)(i, 0) such that

(i) Ξ0 = {X};
(ii) D(n+1) ⊆ D(n) for all n;
(iii) Ξn+1 refines Ξn;
(iv)

⋂
nD

(n) = {x};
(v)

⋃
n Ξn generates the topology of X.

The Bratteli diagram B = (V,E,≤) is constructed out of this sequence as follows. Vertices of Vn are

the towers of Ξn: Vn = T (Ξn). For each inclusion D(n+1)(i, j) ⊂ D(n)(k, 0) we put an edge between T
(n)
k

and T
(n+1)
i . Edges are ordered in a natural way: if e1 corresponds to an inclusion D(n+1)(i, j1) ⊂ D(n)(k, 0)

and e2 to D(n+1)(i, j2) ⊂ D(n)(k, 0), then e1 ≤ e2 whenever j1 ≤ j2. Figure 14 gives an instructive example.
Note that B is essentially simple with emin corresponding to inclusions D(n+1)(i, 0) ⊆ D(n)(j, 0), and emax

corresponding to inclusions D(n+1)(i, J
(n+1)
i − J (n)

j ) ⊆ D(n)(j, 0). Indeed, if there were two minimal paths

corresponding to inclusions D(n+1)(in+1, 0) ⊆ D(n)(in, 0) and D(n+1)(jn+1, 0) ⊆ D(n)(jn, 0), then we would
have ⋂

n

D(n)(in, 0) = {x} =
⋂
n

D(n)(jn, 0),

which is impossible if in 6= jn for some n. Note also that we can always reorder the towers in Ξn to assure

that emin corresponds to inclusions D(n+1)(1, 0) ⊆ D(n)(1, 0), and emax to D(n+1)
(
K(n), J

(n+1)

K(n+1) − J
(n)

K(n)

)
⊆

D(n)
(
K(n+1), 0

)
.

Our goal is to show that (φ,X, x) is conjugated to (φB , XB , emin). The conjugation map ξ : X → XB

is defined as follows. Pick an x ∈ X and n ≥ 1. Let D(n−1)(in−1, jn−1) and D(n)(in, jn) be the elements
of partitions Ξn−1 and Ξn that contain x. Therefore jn−1 ≤ jn and D(n)(in, jn − jn−1) ⊆ D(n−1)(in−1, 0)

and we let ξ(x)(n) to be the edge e that corresponds to this inclusion. In particular, r(e) = T
(n)
in

and

s(e) = T
(n−1)
in−1

. An example is shown in Figure 15.

We claim that for any x ∈ X the initial path of ξ(x) of length n determines precisely the element
D(n)(i, j) such that x ∈ D(n)(i, j) (see Figure 15). More formally,

∀i ≤ n ξ(x)(i) = ξ(y)(i) ⇐⇒ x and y are in the same atom of Ξn.

⇐ is obvious. We prove ⇒ by induction on n. For the base of induction we note that Ξ0 = {X} implies
that ξ(x)(1) are in one-to-one correspondence with elements of Ξ1. Suppose ξ(x)(i) = ξ(y)(i) for all i ≤ n.
The edge ξ(x)(n) corresponds to an inclusion D(n)(in, k) ⊆ D(n−1)(in−1, 0). By inductive assumption x and
y are in the same atom D(n−1)(in−1, jn−1) of D(n−1), therefore x, y ∈ Dn(in, k + jn−1).

From the above claim properties of ξ are almost obvious. It is easy to see that ξ is continuous and
bijective (injectivity follows from item (v)), hence ξ is a homeomorphisms. It is straightforward to check
that ξ ◦ φ = φB ◦ ξ. �

31



32 8. MINIMAL HOMEOMORPHISMS AS VERSHIK MAPS

Figure 14. Construction of a Bratteli diagram out of Kakutani–Rokhlin partitions.

Remark 8.2. Note that given a Bratteli diagram B = (V,E,≤) we can reconstruct a sequence of Kakutani–
Rokhlin partitions: for a path p from ∅ to u ∈ Vn we set

C(p) = {x ∈ XB | x(i) = p(i) ∀i ≤ n }

and Ξn = {C(p) | p ∈ P (V0, Vn) }. Therefore any Vershik map φB that realizes a minimal homeomorphism
φ is constructed as in Theorem 8.1.

2. Telescoping diagrams

In view of Remark 8.2 it is natural to ask: When does two simple ordered Bratteli diagrams give rise to
isomorphic Vershik maps? In this section we give a complete answer to this question.

Definition 8.3. Let B = (V,E) be a Bratteli diagram and let (nk)k∈N be an increasing sequence of natural
numbers with n0 = 0. A telescope of B with respect to (nk) is a Bratteli diagram B′ = (V ′, E′) defined by
V ′k = Vnk and E′k = P (Vnk−1

, Vnk). More precisely, for each path enk−1+1, . . . , enk in B with s(enk−1+1) =
u ∈ Vnk−1

, r(enk) = v ∈ Vnk we have an edge e′ ∈ E′k with s′(e′) = u and r′(e′) = v (see Figure 16).
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Figure 15. A point x ∈ D(1, 11) will have an image ξ(x).

Figure 16. Four levels of a Bratteli diagram B and two levels of B′ with n1 = 2 and n2 = 4.

If B = (V,E,≤) is an ordered Bratteli diagram to begin with, then for any two levels k < l and
v ∈ Vl we have a natural ordering on P (Vk, v): a path ek+1, . . . , el is less than a path fk+1, . . . , fl, where
r(el) = v = r(fl) and s(ek+1), s(fk+1) ∈ Vk, if for the largest k < m ≤ l with em 6= fm we have em < fm.

If now B is an ordered Bratteli diagram and (nk) is an increasing sequence with n0 = 0, then the
telescope B′ of B is also an ordered Bratteli diagram, when edges are endowed with this ordering. If B is
essentially simple, then so is B′.

An increasing sequence of integers (nk) with n0 = 0 will be called a telescoping sequence.

Proposition 8.4. Let B be an essentially simple Bratteli diagram and (nk) be a telescoping sequence; let B′

the telescope of B with respect to (nk). Homeomorphisms (XB , φB , emin) and (XB′ , φB′ , e
′
min) are conjugated.

Proof. The conjugation ξ : XB → XB′ is defined as follows. For x ∈ XB , ξ(x)(k) is defined to
be the edge that corresponds to the path x(nk−1 + 1), . . . , x(nk). It is obvious that ξ : XB → XB′ is a
homeomorphism, and ξ ◦ φB = φB′ ◦ ξ. �

Remark 8.5. In the context of Theorem 8.1, telescoping of Bratteli diagrams corresponds to taking subse-
quences of Kakutani–Rokhlin partitions.

Definition 8.6. We say that two ordered Bratteli diagrams B and B′ are equivalent, if there is a sequence
of ordered Bratteli diagrams B1, . . . , Bn such that B1 = B, Bn = B′ and for each 1 ≤ i < n one of the three
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possibilities hold: either Bi is isomorphic to Bi+1, or Bi+1 is a telescope of Bi, or Bi is a telescope of Bi+1.
In other words, equivalence of ordered Bratteli diagrams is the finest equivalence relations that preserves
isomorphisms and telescoping.

Theorem 8.7 (Herman–Putnam–Skau [HPS92], Theorem 4.5). Let B1 and B2 be simple ordered Bratteli
diagrams. Two Vershik maps φ1 = φB1

and φ2 = φB2
are conjugated if and only if B1 and B2 are equivalent.

Proof. ⇐ follows from Proposition 8.4. We show ⇒. There is no loss in generality to assume that

B1 and B2 are constructed from sequences of Kakutani–Rokhlin partitions Ξ
(1)
n and Ξ

(2)
n respectively. By

passing to subsequences we may assume that Ξ
(1)
n+1 refines Ξ

(2)
n and Ξ

(2)
n+1 refines Ξ

(1)
n for each n. We define

Ξ
(3)
n by

Ξ(3)
n =

{
Ξ

(1)
n if n is even;

Ξ
(2)
n if n is odd.

The sequence Ξ
(3)
n satisfies all the items in the construction from Theorem 8.1, and we let B3 be the diagram

obtained from Ξ
(3)
n . Since B3 is equivalent to the telescope of B1 with respect to (2k)k∈N and also to the

telescope of B2 with respect to (2k + 1)k∈N, we see that B1 and B2 are equivalent. �



LECTURE 9

Invariant means

1. Basic theory

Let G be a discrete group acting on a countable set X. A mean is a linear functional m ∈ `∞(X)∗ such
that m(f) ≥ 0 for all f ≥ 0, and m(1) = 1. Means are in one-to-one correspondence with finitely additive
probability measures on X. We shall let the context to explain whether we refer to a linear function or to
a finitely additive measure. The set of means on X is denoted by M(X). A mean m ∈ M(X) is said to
be G-invariant if m(g ◦ f) = m(f) for all f ∈ `∞(X) and all g ∈ G. Let P(X) be the set of all countably
additive probability measures on X:

P(X) = {µ ∈ `1(X) | µ ≥ 0, ||µ||1 = 1 }.

We can naturally view P(X) as a subset of M(X).

Exercise 9.1. If m is a mean on X, then for any f ∈ `∞(X)

inf f ≤ m(f) ≤ sup f.

Lemma 9.2. P(X)
w∗

= M(X).

Proof. Since P(X)
w∗

is a convex closed subsets of `∞(X)∗, if m0 ∈M(X)\P(X)
w∗

, then by separation

theorem we can find f ∈ `∞(X) and c > 0 such that m0(f) ≥ c+m(f) for all m ∈ P(X)
w∗

. Since P(X)
w∗

includes all Dirac measures, we obtain

m0(f) > sup{m(f) | m ∈ P(X)
w∗ } ≥ sup{ f(x) | x ∈ X },

whence m0 is not a mean. �

Corollary 9.3. Let m ∈ M(X) be a G-invariant mean. There exists a net µn ∈ P(X) such that µn
w∗−−→ m

and g ◦ µn − µn
w∗−−→ 0 for all g ∈ G.

Lemma 9.4. Let m ∈ M(X) be a G-invariant mean. There exists a net µn ∈ P(X) such that µn
w∗−−→ m

and g ◦ µn − µn
||·||1−−−→ 0 for all g ∈ G.

Proof. Let νn ∈ P(X) be such that νn
w∗−−→ m and g ◦ νn − νn

w∗−−→ 0 for all g ∈ G. For each g ∈ G we
take a copy of `1(X), and form a locally convex topological vector space

E =
∏
g∈G

`1(X).

We have a map T : `1(X) → E given by T (µ)(g) = g ◦ µ − µ. The weak topology on E coincides with the

product of weak topologies on factors. Since g ◦ νn − νn
w∗−−→ 0 for each g ∈ G, zero lies in the weak closure

T (P(X)). Since E is locally convex and T (P(X)) is convex, the weak and strong closures coincide, hence
there is some net (µn) ⊆ P(X) such that T (µn)→ 0 in E, which is equivalent to saying ||g ◦ µn − µn||1 → 0
for all g ∈ G. �

Definition 9.5. A group G is said to be amenable if the action Gy G by left multiplication has an invariant
mean.

Fact 9.6 (see, for example, Juschenko–Monod [JM12], Lemma 3.2). If Gy X has an invariant mean and
if stabilizers of all points are amenable subgroups of G, then G itself is amenable.
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2. Actions on finite subsets

If G acts on a set X, then it also acts on Pf (X)—the group of finite subsets of X with symmetric
difference as the group operation. Hence we get an action Pf (X)oGy Pf (X). Fix a point x0 ∈ X and let

Sx0 = {F ∈ Pf (X) | x0 ∈ F }.

For E ∈ Pf (X) let 1E ∈ L2
(
{0, 1}X

)
be the function defined by

1E(w) =

{
1 if w(x) = 0 for all x ∈ E,
0 otherwise.

We write 1x0
for 1{x0}. If µ ∈ P(Pf (X)) and E ∈ Pf (X), we also write µ(E) instead of µ({E}).

Lemma 9.7 (Juschenko–Monod [JM12], Lemma 3.1). Suppose that the action Gy X is transitive. In the
above notations the following conditions are equivalent.

(i) There exists a G-almost invariant net {fn} ∈ L2
(
{0, 1}X

)
such that

||fn · 1x0
||2

||fn||2
→ 1.

(ii) The action Pf (X) oGy Pf (X) admits an invariant mean.
(iii) The action Gy Pf (X) admits an invariant mean m such that m(Sx0) = 1/2.
(iv) The action Gy Pf (X) admits an invariant mean m such that m(Sx0

) = 1.

Proof. (i) =⇒ (ii) Let fn be a G-almost invariant net with
||fn·1x0 ||2
||fn||2 → 1. Without loss of generality

we may assume that ||fn||2 = 1. Recall that a Fourier transform f̂n ∈ `2(Pf (X)) of fn ∈ L2
(
{0, 1}X

)
is

given by

f̂n(E) =

∫
{0,1}X

fn(w)(−w,E) dλ,

where

(w,E) = exp
(
iπ
∑
x∈E

w(x)
)
.

Note that every element in {0, 1}X has order two, therefore (−w,E) = (w,E). The Fourier transform f̂n
gives G-almost invariant vectors in `2(Pf (X)), since

||g ◦ f̂n − f̂n||2 =
∣∣∣∣(g ◦ fn − fn)̂

∣∣∣∣
2

= ||g ◦ fn − fn||2.

We claim that f̂n are also {x0}-almost invariant. Since ||fn||2 = 1 and

||fn · 1x0 ||2
||fn||2

→ 1

we get ||fn · (1− 1x0
)||2 → 0. Therefore

||{x0} ◦ f̂n − f̂n||22 =
∑

E∈Pf (X)

∣∣∣ ∫
{0,1}X

fn(w)(w,E)(eiπw(x0) − 1) dλ
∣∣∣2

= 4
∑
E

∣∣∣ ∫
{0,1}X

fn(w)(1− 1x0)(w)(w,E) dλ
∣∣∣2

= 4
∑
E

∣∣∣(fn · (1− 1x0
)
)̂

(E)
∣∣∣2

= 4
∣∣∣∣(fn · (1− 1x0

)
)̂ ∣∣∣∣2

2
= 4 ||fn · (1− 1x0

)||22 → 0.
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Thus f̂n is {x0}-almost invariant. Since G acts transitively on X, for any y ∈ X there is g ∈ G such that

gx0 = y, hence f̂n is also {y}-almost invariant. Whence the net f̂n is actually Pf (X) oG-almost invariant.
By the Cauchy–Schwarz inequality

||g ◦ f̂ 2
n − f̂ 2

n ||1 = ||(g ◦ f̂n − f̂n)(g ◦ f̂n + f̂n)||1
≤ ||g ◦ f̂n − f̂n||2 · ||g ◦ f̂n + f̂n||2
≤ 2 ||g ◦ f̂n − f̂n||2

Thus the net f̂ 2
n ∈ P(X) is G-almost invariant, and any of its w∗-limit points in M(X) is a G-invariant

mean on X.
(ii) =⇒ (iii) Let m be a Pf (X) oG-invariant mean. Since {x0} · Sx0

= ∼Sx0
, we get

m(Sx0) = m({x0} · Sx0) = m(∼Sx0) = 1/2.

(iii) =⇒ (iv) Let m be a G-invariant mean such that m(Sx0) = 1/2. Repeating arguments of Lemmata

9.2 and 9.4 one shows that there exists a net µn ∈ P(Pf (X)) such that µn
w∗−−→ m, µn(Sx0

) = 1/2, and
||g ◦ µn − µn||1 → 0 for all g ∈ G.

Fix k ≥ 1. Let U : Pf (X)k → Pf (X) be the “union function:”

U(F1, . . . , Fk) =
⋃
i

Fi.

Let µ
(k)
n = U∗µ

×k
n be the push-forward of µ×kn to a measure on Pf (X):

µ(k)
n (A) = µ×kn (U−1(A)).

We have
µ(k)
n (Sx0) = µ×kn { (F1, . . . , Fk) | ∃i x0 ∈ Fi }

= 1− µ×kn { (F1, . . . , Fk) | ∀i x0 6∈ Fi }

= 1− µ×kn (∼Sx0
× · · · × ∼Sx0

) = 1− 2−k.

The net µ
(k)
n is G-almost invariant, since

||g ◦ µ(k)
n − µ(k)

n ||1 =
∑

E∈Pf (X)

∣∣∣µ(k)
n (gE)− µ(k)

n (E)
∣∣∣

=
∑
E

∣∣∣µ×kn { (F1, . . . , Fk)
∣∣ ⋃
i

Fi = gE
}
− µ×kn

{
(F1, . . . , Fk)

∣∣ ⋃
i

Fi = E
}∣∣∣

=
∑
E

∣∣∣ ∑
(F1,...,Fk)⋃
Fi=gE

k∏
j=1

µn(Fj)−
∑

(F1,...,Fk)⋃
Fi=E

k∏
j=1

µn(Fj)
∣∣∣

=
∑
E

∣∣∣ ∑
(F1,...,Fk)⋃

Fi=E

k∏
j=1

µn(gFj)−
∑

(F1,...,Fk)⋃
Fi=E

k∏
j=1

µn(Fj)
∣∣∣

≤
∑
E

∑
(F1,...,Fk)⋃

Fi=E

∣∣∣∣∣
k∏
j=1

µn(gFj)−
k∏
j=1

µn(Fj)

∣∣∣∣∣
=

∑
(F1,...,Fk)

∣∣∣∣∣
k∏
j=1

µn(gFj)−
k∏
j=1

µn(Fj)

∣∣∣∣∣
≤

k∑
j=1

∑
(F1,...,Fk)

µn(gF1) · · ·µn(gFj−1)
∣∣µn(gFj)− µn(Fj)

∣∣µn(Fj+1) · · ·µn(Fk)

= k||g ◦ µn − µn||1
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Let mk ∈M(Pf (X)) be a limit point of the net (µ
(k)
n ). The mean mk is G-invariant and mk(Sx0

) = 1− 2−k.
Let finally m̃ ∈M(Pf (X)) be any limit point of the sequence mk. It is G-invariant and m̃(Sx0) = 1.

(iv) =⇒ (i) Let m be a G-invariant mean with m(Sx0) = 1. There exists a net µn ∈ P(Pf (X)) such

that µn
w∗−−→ m, ||g ◦ µn − µn||1 → 0 for all g ∈ G, and µn(Sx0

) = 1. Set

fn =
∑

F∈Pf (X)

µn(F )2|F |1F .

Since µn is supported on Sx0
, fn · 1x0

= fn. The norm ||fn||1 = 1, since

||fn||1 =

∫ ∣∣∣ ∑
F∈Pf (X)

µn(F )2|F |1F

∣∣∣dλ
=

∫ ∑
F

µn(F )2|F |1F dλ

=
∑
F

2|F |µn(F )

∫
1F dλ

=
∑
F

2|F |µn(F )2−|F | dλ = 1.

We claim that ||g ◦ fn − fn||1 ≤ ||g ◦ µn − µn||1. Indeed,

||g ◦ fn − fn||1 =

∫ ∣∣∣ ∑
F∈Pf (X)

µn(F )2|F |1g−1F −
∑

F∈Pf (X)

µn(F )2|F |1F

∣∣∣dλ
=

∫ ∣∣∣∑
F

µn(gF )2|F |1F −
∑
F

µn(F )2|F |1F

∣∣∣dλ
=

∫ ∣∣∣∑
F

2|F |1F (µn(gF )− µn(F ))
∣∣∣dλ

≤
∑
F

|g ◦ µn − µn| = ||g ◦ µn − µn||1.

Therefore f
1/2
n ∈ L2

(
{0, 1}X

)
are as required, since

||g ◦ f1/2
n − f1/2

n ||2 =
(∫ ∣∣g ◦ f1/2

n − f1/2
n

∣∣2dλ)1/2

≤
(∫ ∣∣g ◦ fn − fn∣∣dλ)1/2

= ||g ◦ fn − fn||1/21 . �



LECTURE 10

Amenability of topological full groups

Let φ ∈ Homeo(X) be a minimal homeomorphism. Fix some x ∈ X. The orbit Orbφ(x) can naturally
be identifies with the set of integers Z, where x corresponds to 0 ∈ Z. Via this identification we get an
action of [[φ]] on Z. In other words, for any x ∈ X we have a homomorphism πx : [[φ]] → S(Z), where S(Z)
is the group of permutations of the integers. The images πx(g) are quite special, since they have bounded
displacement. Let for g ∈ S(Z)

| g |w = sup
n∈Z
|g(n)− n| ∈ N ∪ {∞}.

We say that g ∈ S(Z) has bounded displacement if | g |w < ∞. Such elements form a subgroup of S(Z),
which we denote by W (Z). For any x ∈ X, πx([[φ]]) < W (Z).

A subgroup G < S(Z) is said to have ubiquitous pattern property if for every finite set F ⊆ G and every
n ≥ 1 there exists k = k(n, F ) such that for every j ∈ Z there exists t ∈ Z,

[t− n, t+ n] ⊆ [j − k, j + k],

and g(i) + t = g(i+ t) for every g ∈ F and every i ∈ [−n, n].

Lemma 10.1 (Juschenko–Monod [JM12], Lemma 4.2). Let φ ∈ Homeo(X) be a minimal homeomorphism
and x ∈ X. The group πx([[φ]]) has ubiquitous pattern property.

Proof. Suppose towards the contradiction that there exists a finite set F ⊆ G and n > 0 such that for
any k > n there exists jk such that for all t with [t− n, t+ n] ⊆ [jk − k, jk + k] the action of F on [−n, n] is
different from the its action on [t−n, t+n]. Let P be the common refinement of partitions {n−1

g (k)}k∈Z for
g ∈ F . Given y ∈ X and an interval of natural numbers [t− n, t+ n] let Q(y, [t− n, t+ n]) be the partition
of [−n, n] defined by identifying naturally [−n, n] with {φi(y)}i∈[t−n,t+n] and setting

Q(y, [t− n, t+ n]) = P ∩ {φi(y)}i∈[t−n,t+n].

For any t with [t − n, t + n] ⊆ [jk − k, jk + k] partitions Q(x, [−n, n]) and Q(x, [t − n, t + n]) are different.
Define sets

Mk =
{
y ∈ X

∣∣ ∀[t− n, t+ n] ⊆ [−k, k] Q(y, [t− n, t+ n]) 6= Q(x, [−n, n])
}
.

The sets Mk are non-empty, closed, and Mk+1 ⊆Mk, therefore M =
⋂
kMk is a non-empty closed subset of

X. Since φ(Mk) ⊆Mk−1, the set M is φ-invariant. But x 6∈M , contradicting the minimality of φ. �

Lemma 10.2 (Juschenko–Monod [JM12], Lemma 4.1). If G < W (Z) has ubiquitous patter property, then
the stabilizer in G of E4N is locally finite for every E ∈ Pf (X).

Proof. Let E ∈ Pf (Z) and F ⊆ StabG(E4N) be finite. Put M = maxe∈E |e| and N = maxg∈F | g |w.
Let k = k(M + 2N,F ) be from the definition of the ubiquitous pattern property. Let for n ∈ Z

In = [(2n− 1)k + n, (2n+ 1)k + n].

The intervals In partition Z. Let E0 = (E4N) ∩ [−M − 2N,M + 2N ] and by the choice of k we may find
En ⊆ In and tn such that En = E0 + tn and g(s)+ tn = g(s+ tn) for all g ∈ F and all s ∈ E0 (see Figure 17).
We define sets Bn by

Bn = En ∪
(
[max(En) + 1,max(En+1)] \ En+1

)
.

Note that Z =
⊔
n∈ZBn, each Bn is finite and |Bn| < 4k+ 2 for all n. We claim that sets Bn are g-invariant

for all g ∈ F . Fix g ∈ F . Since g(E4N) = E4N, we get gE0 ⊆ E4N, hence maxE0 < min(gE0 \ E0) and
therefore also

maxEn < min(gEn \ En) ∀n.
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40 10. AMENABILITY OF TOPOLOGICAL FULL GROUPS

Figure 17. Construction of intervals In, sets En and Bn.

In other words, g “sends points from En to the right”. Since [maxEn − | g |w,maxEn] ⊆ En, it follows that
Bn is g-invariant.

Since cardinalities |Bn| are uniformly bounded by 4k + 2, we can view F as a subsets of a power of a
finite group, hence F generates a finite group. �

Let fn : {0, 1}Z → [0, 1] be the following sequence of functions:

fn(w) = exp
(
−n
∑
j∈Z

w(j)e−|j|/n
)
.

Fact 10.3 (Juschenko–Monod [JM12], Theorem 2.1). The sequence fn satisfies conditions of item (i) of
Lemma 9.7. Consequently, the action W (Z) y Z has an invariant mean.

Theorem 10.4 (Juschenko–Monod [JM12], Theorem A). Topological full groups of Cantor minimal systems
are amenable.

Proof. Let φ be a minimal homeomorphism of a Cantor space X. For x ∈ X we have an embedding
πx : [[φ]]→ W (Z) and therefore by Fact 10.3 there is a Pf (Z) o πx([[φ]])-invariant mean on Pf (Z). Consider
the homomorphism ξ : [[φ]]→ Pf (Z) o πx([[φ]])

ξ(g) =
(
N4πx(g)(N), πx(g)

)
.

The homomorphism ξ is injective and for any E ∈ Pf (X)

ξ(g)(E) = E ⇐⇒ πx(g)(E4N) = E4N.
In other words, the stabilizer of E in ξ([[φ]]) is the stabilizer of E4N in πx([[φ]]). Thus the action ξ([[φ]]) y
Pf (Z) has an invariant mean and by Lemma 10.2 stabilizers of all points are locally finite, hence amenable.
Fact 9.6 finishes the proof. �



APPENDIX A

Topological full groups of Z2 actions

We present an example from [EM13] of a Z2 minimal action with a non-amenable topological full group.
Let Σ denote the space of all proper edge-colourings of the grid Z2 into six colours {a, b, c, d, e, f}.

Denote by 〈a〉 the group with two elements {e, a}. Let (wi)i∈N be an enumeration of all the elements in
the free product 〈a〉 ∗ 〈b〉 ∗ 〈c〉. Note that this free product contains a non-abelian free subgroup, hence is
non-amenable. We pick a function g : Z→ N satisfying the following: for any i ∈ N there is L > 0 such that
any subinterval I ⊆ Z of length ≥ L contains n ∈ I with g(n) = i. For example, we may take

g(n) =

{
i |n| = 2im, m is odd,

0 n = 0.

We construct an element x ∈ Σ as follows. For n ∈ Z we take wg(i) and label edges with w−1
g(i)

_d upward

starting from the zero level (Figure 18). We continue this labelling periodically and colour horizontal edges
with e and f in a proper way.

Figure 18. Construction of x, wg(n1) = wg(n2) = caba.

Z acts on Σ by shifting edges. With a letter a we associate a homeomorphism a : Σ → Σ defined as
follows. Let y ∈ Σ. If there is v ∈ {(0,±1), (±1, 0)} such that the edges starting from 0 in the direction of v
is coloured with a, we let a(y) = y + v. Otherwise we set a(y) = y. The homeomorphisms a, b, c are in the
topological full group of the shift. Let M be any minimal subshift of OrbZ2(x). The action of 〈a〉 ∗ 〈b〉 ∗ 〈c〉
on M is faithful, hence the topological full group of the shift on M is non-amenable.
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APPENDIX B

Dimension groups

We start by recalling the definition of the direct system of groups. Let (Gn)n∈N be a sequence of groups
with homomorphisms ξn : Gn−1 → Gn. For i < n we let

ξin = ξn ◦ · · · ◦ ξi+1.

The direct limit of (Gn, ξn) is the disjoint union
⊔
nGn modulo the equivalence relation xm ∈ Gm, xn ∈ Gn,

xm ∼ xn if there is N > m,n such that ξmN (xm) = ξnN (xn). Group operations are defined in the obvious
way.

Given a Bratteli diagram B = (V,E) with kn = |Vn|, we consider integer valued matrices Mn ∈
Mkn×kn−1 defined by Mn = (mij), mij = |P (vj , vi)|, where vj ∈ Vn−1 and vi ∈ Vn. In other words,

mij is the number of edges between the jth vertex of Vn−1 and the ith vertex of Vn. For example, given the
portion of Bratteli diagram in Figure 14, the corresponding matrices Mn are

M1 =

(
4
3

)
, M2 =

2 0
1 1
1 1

 , M3 =

1 1 0
0 1 1
1 0 1

 .

A matrix Mn naturally defines a homomorphism Mn : Zkn−1 → Zkn and therefore we have a direct system
of Abelian groups

Z M1−−→ Zk1 M2−−→ Zk2 M3−−→ · · · Mn−−→ Zkn Mn+1−−−−→ · · ·
The direct limit of this system is denoted by K(B). Each Zkn has a positive cone that consists of vectors
with non-negative coordinates. The positive cones are preserved by homomorphisms Mn and the direct limit
of these cones is the positive cone K+(B) in K(B). The dimension group of the Bratteli diagram B is the
triple (K(B),K+(B),1), where 1 ∈ K(B) is the element that corresponds to 1 ∈ Z.

With a homeomorphism φ ∈ Homeo(X) we associate the group K0(φ) that is defined to be the quotient
of Abelian groups

K0(φ) = C(X,Z)/∂φC(X,Z),

where ∂φC(X,Z) = { f − f ◦ φ | f ∈ C(X,Z) }. This group also has a positive cone K+
0 (φ), which is the

image under the quotient map of the cone of non-negative functions. The dimension group of φ is the triple
(K0(φ),K+

0 (φ),1), where 1 corresponds to the constant one function on X.

Theorem B.1 (Glasner–Weiss [GW95], Theorem 5.1). Let φ ∈ Homeo(X) be minimal. If B = (V,E,≤)
is a simple ordered Bratteli diagram such that φB is conjugated to φ, then (K(B),K+(B),1) is isomorphic
to (K0(φ),K+

0 (φ),1).

Proof. Define a map ζ : C(X,Z) → K(B) as follows: given f ∈ C(X,Z) choose an n such that
Vn represents columns of a Kakutani-Rokhlin partition which is compactible with f , i.e., Ξn is finer than

{f−1(k)}k∈Z. Note that f is also compatible with all partitions Ξm, m ≥ n. We define f̃m ∈ Zkm by setting

f̃m(j) to be the sum of values of f over all the levels of the jth tower Tj in Ξn. Since

f̃m+1(j) =
∑
l

(Mm+1)j,lf̃m(l) = (Mm+1f̃m)(j),

the sequence (f̃m) defines an element ζ(f) ∈ K(B). The map ζ is a homomorphism ζ : C(X,Z)→ K(B).

If f = g ◦ φ− g for some g ∈ C(X,Z), then f̃m(j) = g ◦ φJ
(m)
j (x)− g(x) for some x ∈ D(m)(j, 0) in the

base of the tower, where J
(m)
j is the height of the jth tower in Ξm. If m is large enough, g is compatible with

Ξm and is constant on its base. Since φJ
(m)
j (x) is in the base, we get ζ(f) = 0, hence ∂φC(X,Z) ⊆ ker ζ.
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Conversely, if ζ(f) = 0, there exists m such that f̃m = 0. We show that there is a function g ∈ C(X,Z)
such that f = g ◦φ−g. We let g be equal 0 on D(m)(j, 0) and f(x)+f(φ(x))+ · · ·+f(φl−1(x)) on D(m)(j, l),
where x is a point in D(m)(j, 0). Obviously f = g ◦φ−g everywhere, except possibly the top of the partition.

For x in the top level the equality follows from g(φJ
(m)
j x) = 0 and f̃m(j) = 0. Whence ζ : K0(φ)→ K(B) is

a monomorphism.
If d is an element in K(B), choose an m such that d can be represented as an element of Zkm and define

f on the corresponding partition as follows. For x ∈ D(m)(j, 0) set f(x) = d(m, j), and 0 elsewhere. Then

f̃(j) = d(m, j) and ζ is onto. It is easy to check that ζ(K+
0 (φ)) = K+(B) and ζ(1) = 1. �
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